DOI QR코드

DOI QR Code

무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성

Reflectivity characteristics of Ag nano-crystals grown by electroless plating

  • 김신우 (호서대학교 신소재공학과)
  • Kim, Shin-Woo (Dept. of Materials Engineering, Hoseo University)
  • 투고 : 2013.08.20
  • 심사 : 2013.09.23
  • 발행 : 2013.10.31

초록

본 연구에서는 LCD 또는 LED를 이용한 디스플레이 장치의 BLU 반사판으로 사용할 목적으로 무전해도금에 의하여 플라스틱 기판위에 성장되어진 은 나노코팅의 반사율 특성을 조사하였다. 은 나노코팅의 미세구조는 아주 미세한 나노크기의 은 결정들로 이루어진 다결정 나노코팅인 것을 확인할 수 있었으며 코팅 층의 두께가 증가함에 따라 환원, 석출된 은 나노결정입자의 크기도 비례하여 증가되었다. 은 나노코팅의 두께가 증가함에 따라 가시광선 영역의 반사율이 감소하였으며 파장이 짧을수록 반사율의 감소가 더 심하였다. 나노코팅의 두께 증가에 따른 반사율의 감소는 환원 석출된 은나노결정의 크기와 밀접하게 관련된 것으로 은 결정입자가 클수록 요철의 정도가 심하여 반사율이 감소하는 것으로 생각되어진다. 그래서 가능한 미세한 은 나노결정을 환원, 석출시키고 코팅두께를 얇게 하는 것이 반사율 관점에서 바람직한 것으로 판단되어진다.

In this study, the reflectivity characteristics of Ag nano-coating grown by electroless plating were investigated in order to use as the reflecting plate of BLU (Back Light Unit) in the LCD (Liquid Crystal Display) or LED (Light Emitting Diode) display equipment. The microstructure of Ag nano-coating was polycrystalline nano-structure that consisted of Ag nano-crystals to be reduced and precipitated, and the size of reduced nano-crystals increased as the thickness of nano-coating increased. The reflectivity of Ag nano-coating in the visible light decreased as the thickness of nano-coating increased and the reduction of reflectivity was more severe in the short wavelength region of visible light. The decrease of reflectivity was closely related to the size of Ag nano-crystal and was thought to be due to the larger surface roughness of larger nano-coating thickness. Therefore, the finer Ag nano-crystals and thinner nano-coating thickness could be favorable for the higher reflectivity of Ag nano-coating grown by electroless plating.

키워드

참고문헌

  1. J.M. Lee, J.T. Jeon, B.K. Jung, G.D. Lee and M.J. Moon, "Characterization of Al Films Prepared by Sputtering", J. Korean Ind. Eng. Chem. 15 (2004) 393.
  2. M. Zaborowski and P. Dumania, "Kinetics of hillock growth in Al and Al-alloys", Microelectronic Eng. 50 (2000) 301. https://doi.org/10.1016/S0167-9317(99)00296-8
  3. S.K. Saha, R.S. Howell and M.K. Hatalis, "Elimination of hillock formation in al interconnects using Ni or Co", J. Appl. Phys. 86 (1999) 625. https://doi.org/10.1063/1.370776
  4. B.C. Martin, C.J. Tracy, J.W. Mayer and L.E. Hendrickson, "A comparative study of hillock formation in aluminum films", Thin Solid Films 271 (1995) 64. https://doi.org/10.1016/0040-6090(95)06941-0
  5. S. Aceto, C.Y. Chang and R.W. Vook, "Hillock growth on aluminium and aluminium alloy films", Thin Solid Films 219 (1992) 80. https://doi.org/10.1016/0040-6090(92)90726-R
  6. A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski and J. Schubert, "Hillock formation during electromigration in Cu and Al thin films: Three-dimensional grain growth", Appl. Phys. Lett. 66 (1995) 1214. https://doi.org/10.1063/1.113240
  7. S.J. Hwang, J.H. Lee, C.O. Jeong and Y.C. Joo, "Effect of film thickness and annealing temperature on hillock distributions in pure Al films", Scripta Mater. 56 (2007) 17. https://doi.org/10.1016/j.scriptamat.2006.09.001
  8. ASM Handbook Vol. 2 10th Ed. (1990) 1157.
  9. H.T. Yeom and J.S. Lee, "Electroplating surface treatment", Munoondang (2000) 265.
  10. N.I. Kim and S.S. Jang, "Electoless plating", Dongwha- Gisul (1996) 15.