DOI QR코드

DOI QR Code

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy

XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2013.08.03
  • Accepted : 2013.09.30
  • Published : 2013.10.27

Abstract

To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Keywords

References

  1. Hee Yeon Yang, Young Soo No, Jin Young Kim, and Tae Whan Kim, Jap. J. Appl. Phys., 51, 06FG13 (2012). https://doi.org/10.7567/JJAP.51.06FG13
  2. M. S. Kim, K. G. Yim, D. Y. Kim, S. Kim, G. Nam, D. Y. Lee, S. O. Kim, J. S. Kim, J S. Kim, J. S. Son, and J. Y. Leem, Electron. Mater. Lett., 8, 75 (2012). https://doi.org/10.1007/s13391-011-0130-y
  3. D. H. Lee, K. W. Kim, Y. S. Chun, S. S. Kim and S. Y. Lee, Curr. Appl. Phys., 12, 1586 (2012). https://doi.org/10.1016/j.cap.2012.05.009
  4. Jang-Yeon Kwon, Do-Joong Lee and Ki-Bum Kim, Electron. Mater. Lett., 7/1, 1 (2011).
  5. H. Yanagi, T. Hase, S. Ibuki, K. Ueda and H. Hosono, Appl. Phys. Lett., 78, 1583 (2001). https://doi.org/10.1063/1.1355673
  6. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano and H. Hosono, Phys. Status Solidi A, 206, 2187 (2009). https://doi.org/10.1002/pssa.200881792
  7. Chun-Chieh Lo, Tsung-Eong Hsieh, Ceram. Inter., 38, 3977 (2012). https://doi.org/10.1016/j.ceramint.2012.01.052
  8. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Cho, J. Appl. Phys., 105, 013502 (2009). https://doi.org/10.1063/1.3054175
  9. J. S. Park, W. J. Maeng, H. S. Kim and J. S. Park, Thin Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  10. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, W. C. Wu, Solid-State Electron., 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  11. S. Fernandez, A. Martinez-Steele, J. J. Gandia, F. B. Naranjo, Thin Solid Films, 517, 3152 (2009). https://doi.org/10.1016/j.tsf.2008.11.097
  12. H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  13. Y. S. Choi, J. W. Kang, D. K. Hwang and S. J. Park, IEEE Trans. Electron. Devices, 57, 26 (2010). https://doi.org/10.1109/TED.2009.2033769
  14. Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen and M. Wraback, J. Electron. Mater., 29, 69 (2000). https://doi.org/10.1007/s11664-000-0097-1
  15. Oleg Mitrofanov and Michael Manfra, J. Appl. Phys., 95, 6414 (2004). https://doi.org/10.1063/1.1719264

Cited by

  1. Electrical Characteristics of Thin Film Transistor According to the Schottky Contacts vol.24, pp.3, 2014, https://doi.org/10.3740/MRSK.2014.24.3.135
  2. Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD vol.55, pp.1, 2018, https://doi.org/10.4191/kcers.2018.55.1.04