DOI QR코드

DOI QR Code

Prognostic Technique for Ball Bearing Damage

볼 베어링 손상 예측진단 방법

  • Received : 2012.12.28
  • Accepted : 2013.09.28
  • Published : 2013.11.01

Abstract

This study presents a prognostic technique for the damage state of a ball bearing. A stochastic bearing fatigue defect-propagation model is applied to estimate the damage progression rate. The damage state and the time to failure are computed by using RMS data from noisy acceleration signals. The parameters of the stochastic defect-propagation model are identified by conducting a series of run-to-failure tests for ball bearings. A regularized particle filter is applied to predict the damage progression rate and update the degradation state based on the acceleration RMS data. The future damage state is predicted based on the most recently measured data and the previously predicted damage state. The developed method was validated by comparing the prognostic results and the test data.

볼 베어링의 손상 상태를 예측하기 위한 방법을 본 논문에서 제시하였다. 손상 진전율을 추정하기 위해 확률적 베어링 피로 결함 진전 모델을 적용하고 잡음이 포함된 가속도 신호의 RMS 데이터를 이용하여 손상 상태와 고장 시간을 계산하였다. 확률적 결함 진전 모델의 파라미터는 볼 베어링에 대한 일련의 Run-to-Failure 시험을 수행하여 결정하였다. 가속도 RMS값으로부터 손상 진전율과 손상 상태를 추정하기 위해 규칙화된 파티클 필터 추정 방법을 적용하였다. 미래 시점에서의 손상 상태는 최근 측정된 데이터와 직전에 추정된 상태값을 이용하여 예측하였다. 예측된 손상 상태와 시험 데이터와 비교하여 개발된 방법의 적절성을 확인하였다.

Keywords

References

  1. Li, Y., Kurfess, T. R. and Liang S. Y., 2000, "Stochastic Prognostics for Rolling Element Bearings," Mechanical Systems and Signal Processing, Vol. 14, pp. 747-762. https://doi.org/10.1006/mssp.2000.1301
  2. Kotzalas, M. N. and Harris, T. A., 2001, "Fatigue Failure Progression in Ball Bearings," Trans. of the ASME, Vol. 123, pp. 238-242. https://doi.org/10.1115/1.1308013
  3. Bolander, N., Qiu, H., Eklund, N., Hindle, E. and Rosenfeld, T., 2009, "Physics-based Remaining Useful Life Prediction for Aircraft Engine Bearing Prognosis," Annual Conference of the Prognostics and Health Management Society, pp. 1-9.
  4. Simon, D., 2006, Optimal State Estimation: Kalman, $H{\infty}$, and Nonlinear Approaches, Wiley-Interscience.
  5. Qiu, J., Set, B. B., Liang, S. Y. and Zhang, C., 2002, "Damage Mechanics Approach for Bearing Lifetime Prognostics," Mechanical Systems and Signal Processing, Vol. 16, pp. 817-29. https://doi.org/10.1006/mssp.2002.1483
  6. Kim, Y. S., Lee, D. H. and Kim S. K., 2010, "Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 11, pp. 1681-1689. https://doi.org/10.3795/KSME-A.2010.34.11.1681
  7. Orchard, M., Wu, B. and Vachtsevanos, G., 2005, "A Particle Filtering-based Framework for Failure Prognosis," Proceedings of WTC2005, pp. 1-2.

Cited by

  1. vol.17, pp.2, 2014, https://doi.org/10.5293/kfma.2014.17.2.073