DOI QR코드

DOI QR Code

Effects of Elevated CO2 and Temperature on the Leaf Morphological Responses of Quercus serrata and Quercus aliena, Potential Natural Vegetation of Riverine

CO2농도 및 온도 상승이 하천변 잠재자연식생인 졸참나무와 갈참나무 잎의 형태학적 반응에 미치는 영향

  • Received : 2013.01.10
  • Accepted : 2013.02.25
  • Published : 2013.05.31

Abstract

This study was conducted to find the leaf morphological responses of Quercus serrata and Q. aliena which are potential natural vegetation of riverine in Korea under elevated $CO_2$ and increased temperature. Rising $CO_2$ concentration was treated with 1.6 times than control(ambient) and increased temperature with $2.2^{\circ}C$ above the control(ambient) in the glass greenhouse. As a result, leaf width length, leaf lamina weight and leaf area of Q. serrata and Q. aliena was respectively increased, and number of leaves and specific leaf area(SLA) was decreased by elevated $CO_2$ and temperature. Leaf width length, leaf lamina length, leaf lamina weight, number of leaves, leaf area, and specific leaf area of Q. serrata were not statistically significant difference between control and treatment. Leaf width length and leaf weight of Q. aliena was increased, but specific leaf area was decreased. These results indicated that Q. aliena was to be sensitive than Q. serrata in response to global warming situation. According to the principal component analysis(PCA), two oak species were arranged based on factor 1 and 2 in the control and warming treatment. And change on the warming treatment was clearly distinguishable from the Q. aliena than Q. serrata.

한반도의 참나무 중 하천변 잠재자연식생인 졸참나무와 갈참나무를 대상으로 지구온난화의 핵심 요소인 $CO_2$농도와 온도를 상승시킬 때 잎의 형태학적 반응이 어떻게 일어나는지 알아보고자 유리온실 내에서 대기 중의 $CO_2$농도를 그대로 반영한 대조구와 이보다 $CO_2$농도는 약 1.6배와 온도는 $2.2^{\circ}C$상승시킨 온난화처리구에서 실험하여 관찰하였다. 그 결과, 졸참나무와 갈참나무는 $CO_2$농도와 온도의 상승으로 인하여 잎폭 길이, 잎몸 무게 그리고 엽면적이 증가하고 잎 수와 비엽면적은 감소하는 경향을 나타냈다. 졸참나무는 잎폭 길이, 잎몸 길이, 잎몸 무게, 잎 수, 엽면적 그리고 비엽면적 모두 대조구와 온난화처리구 간에 차이가 없었다. 그러나 갈참나무는 잎폭 길이와 잎몸 무게의 증가, 비엽면적의 감소가 뚜렷하였다. 이상의 잎의 형태학적 반응으로 볼 때, 갈참나무는 $CO_2$농도와 온도에 대하여 졸참나무 보다 민감하게 반응한다는 것을 알 수 있다. 주성분분석 결과, 두 종은 요인 1과 2에 의해 대조구와 온난화처리구에서 배열에 차이가 있었고, 온난화처리에 대한 변화는 졸참나무보다 갈참나무에서 명확히 구별되었다.

Keywords

References

  1. Albert, K. R., Mikkelsen, T. N., Michelsen, A., Ro-Poulsen, H. and van der Linden, L. (2011). Interactive effects of drought, elevated $CO_{2}$ and warming on photosynthetic capacity and photosystem performance in temperate heath plants, Journal of Plant Physiology, 168(13), pp. 1550-1561. https://doi.org/10.1016/j.jplph.2011.02.011
  2. Beon, M. S. (2000). Germination and Growth of Oaks (Quercus serrata, Q. mongolica, Q. variabilis) Seedlings by Gradient of Light Intensity and Soil Moisture, Korean Journal of Agricultural and Forest Meteorology, 2(4), pp. 183-189. [Korean Literature]
  3. Cho, K. T., Kim, H. R., Jeong, H. M., Lee, K. M., Kim, T. K., Kang, T. G. and You, Y. H. (2012). Effect of Light on the Growth Responses of Quercus serrata and Q. aliena to Elevated $CO_{2}$ and Temperature, Journal of Wetlands Research, 14(4), pp. 597-605. [Korean Literature]
  4. Enoch, H. Z. and Honour, S. J. (1993). Significance of increasing ambient $CO_{2}$ for plant growth and survival, and interactions with air pollution, NATO ASI Series, 16, pp. 51-75.
  5. Enoch, H. Z. and Hurd, R. G. (1977). Effect of light intensity carbon dioxide concentration and leaf temperature on gas exchange of spray caenation plants, Journal of Experimental Botany, 28, pp. 84-95. https://doi.org/10.1093/jxb/28.1.84
  6. Fender, A. C., Mantilla-Contreras, J. and Leuschner, C. (2011). Multiple environmental control of leaf area and its significance for productivity in beech saplings, Trees-Structure and Function, 25(5), pp. 847-857. https://doi.org/10.1007/s00468-011-0560-z
  7. Ferris, R. and Taylor, G. (1993). Contrasting effects of elevated $CO_{2}$on the root and shoot growth of four native herbs commonly found in chalk grassland, New Phytologist, 125, pp. 855-866. https://doi.org/10.1111/j.1469-8137.1993.tb03934.x
  8. Garbutt, K., Williams, W. E. and Bazzaz, F. A. (1990). Analysis of the differential response of five annuals to elevated $CO_{2}$during growth, Ecology, 7(3), pp. 1185- 1194.
  9. Gunn, S., Farrar, J. F., Collis, B. E. and Nason, M. (1999). Specific leaf area in barley: individual leaves versus whole plants, New Phytologist, 143, pp. 45-51. https://doi.org/10.1046/j.1469-8137.1999.00434.x
  10. Han, Y. S., Kim, H. R. and You, Y. H. (2012). Effect of Elevated $CO_{2}$Concentration and Temperature on the Ecological Responses of Aster altaicus var. uchiyamae, Endangered Hydrophyte, Journal of Wetlands Research, 14(2), pp. 169-180. [Korean Literature]
  11. He, J. S., Wolfe-Bellin, K. S. and Bazzaz, F. A. (2005). Leaf-level physiology, biomass and reproduction of Phytolacca americana under conditions of elevated $CO_{2}$and altered temperature regimes, International Journal of Plant Science, 166(4), pp. 615-622. https://doi.org/10.1086/430196
  12. Houghton, J. T., Jenkins, G. J. and Ephraums, J. J. (1990). Climate change: the IPCC Scientific Assessment, Cambridge University Press, Great Britain, pp. 364.
  13. Honisch, B., Hemming, N. G., Archer, D., Siddall, M. and McManus, J. F. (2009). Atmospheric carbon dioxide concentration across the Mid Pleistocene transition, Science, 324(5934), pp. 1551. https://doi.org/10.1126/science.1171477
  14. IPCC. (2007). Climate change 2007: Mitigation of climate change. Contribution working group III contribution to the fourth assessment report of the intergovernmental panel on climate change, Cambridge university press, Cambridge, New york, U.S.A., pp. 176.
  15. Jeong, H. M., Kim, H. R. and You, Y. H. (2009). Growth Difference among Saplings of Quercus acutissima, Q. variabilis and Q. mongolica under the Environmental Gradients Treatment, Korean Journal of Environmental Biology, 27(1), pp. 82-87. [Korean Literature]
  16. Jeong, J. K., Kim, H. R. and You, Y. H. (2010). Effects of Elevated $CO_{2}$Concentration and Temperature on Growth Response of Quercus acutissima and Q. variabilis1a, Korean Journal of Environment and Ecology, 24(6), pp. 648-656. [Korean Literature]
  17. Kim, H. J., Shin, B. K., You, Y. H. and Kim, C. H. (2008). A Study on the Vegetation of the Present-day Potential Natural State of Water for Flood Plain Restoration in South Korea, Korean Journal of Environment and Ecology, 22(5), pp. 564-594. [Korean Literature]
  18. Kim, H. R. and You, Y. H. (2010). Effects of Elevated $CO_{2}$Concentration and Temperature on the Response of Seed Germination, Phenology and Leaf Morphology of Phytolacca insularis(Endemic species) and Phytolacca americana(Alien species)1a, Korean Journal of Environment and Ecology, 24(1), pp. 62-68. [Korean Literature]
  19. Kim, S. B. (2008). Wetlands and Environment Resources, Worin Publisher, pp. 61-83. [Korean Literature]
  20. Kim, S. Y and Kang, H. J. (2003). Effects of elevated atmospheric $CO_{2}$on wetland plants: a review, Korean Journal of Limnology, 35(4), pp. 391-402.
  21. Kobayashi, N. (2006). Global Warming and Forest Business(3th ed.). Bomoondang, Seoul. pp 268.
  22. Korea Meterological Adminstration. 2008. Report of Global Atmosphere Watch 2008, Seoul, Korea, pp. 177. (in Korean)
  23. Lee, M. J. (2007). Community structure analysis and ecological planting model subject of the principal Quercus community in Korea, Ph. D. Dissertation, Chungnam National University, pp. 188. [Korean Literature]
  24. Lee, S. K., You, Y. H. and Yi, H. B. (2010). The Growth Response of Quercus dentata Sapling to the Environmental Gradients Treatment, Korean Journal of Life Science, 20(4), 597-601. [Korean Literature] https://doi.org/10.5352/JLS.2010.20.4.597
  25. Lim, H. Kim, H. R. and You, Y. H. (2012). Growth Difference between th Seedlings of Quercus serrata and Q. aliena under light, moisture and nutrient Gradients, Journal of Wetlands Research, 14(2), pp. 237-242. [Korean Literature]
  26. No, H. J. and Jeoung, H. Y. (2002). Easy to Understand Statistical Analysis by STATISTICA, Hyungseul Publisher, pp. 535-556. [Korean Literature]
  27. Norby, R. J and O'Neill, E. G. (1991). Leaf area compensation and nutrient interactions in $CO_{2}$-enriched seedlings of yellow-poplar(Liriodendron tulipifera L.), New Phytologist, 117, pp. 515-528. https://doi.org/10.1111/j.1469-8137.1991.tb00956.x
  28. Park, H. R. (2003). Global warming and its effects and preventive, Uyoug, Seoul, pp. 285.
  29. Park, J. H., Chung, M. G., Sun, B. Y., Kim, K. J., Pak, J. H. and Park, C. W. (2005). Numerical analysis of Quercus L. subgenus Quercus (Fagaceae) in Korea, Korean Journal of Plant Taxonomists, 35(1), pp. 57-80. [Korean Literature]
  30. Park, W. K. (1993). Increasing atmospheric carbon dioxide and grewth trends of korean subalpine conifers, Journal of Korean Forestry Society, 82(1), pp. 17-25.
  31. Poorter, H., Pot, S. and Lambers, H. (1988). The effects of an elevated atmospheric $CO_{2}$concentration on growth, photosynthesis and respiration of Plantago major, Physiologia Plantarum, 73(4), pp. 553-559. https://doi.org/10.1111/j.1399-3054.1988.tb05440.x
  32. Radoglou, K. M. and Jarvis, P. G. (1990.) Effects of $CO_{2}$enrichment on four Poplar clones. I. Growth and leaf anatomy, Annals of Botany, 65(6), pp. 617-626. https://doi.org/10.1093/oxfordjournals.aob.a087978
  33. Rasineni, G. K., Guha, A., Reddy, A.R. (2011). Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric $CO_2$: Growth, biomass productivity and carbon sequestration efficacy. Plant Science, 181(4), pp. 428-438. https://doi.org/10.1016/j.plantsci.2011.07.005
  34. Shin, D. H., Kim, H. R. and You, Y. H. (2012). Effects of Elevated $CO_{2}$Concentration and Increased Temperature on the Change of the Phenological and Reproductive characteristics of Phytolocca insularis, a Korea endemic plant, Journal of Wetlands Research, 14(1), pp. 1-9. [Korean Literature]
  35. Sim, J. S. and Han, S. S. (2003). Ecophysiological Characteristics of Deciduous Oak Species(III) - Photosynthetic Responses of Leaves to Change of Light Intensity. Journal of Korean Forestry Society, 92(3), pp. 208-214.
  36. Song, M. S. (2008). Analysis of distribution and association structure on the Sawtooth Oak (Quercus acutissima) Forest in Korea, Ph. D. Dissertation, Changwon National University, pp. 105-110. [Korean Literature]
  37. Tomas, S. C. and Bazzaz, F. A. (1996). Elevated $CO_{2}$and leaf shape: Are dandelions gertting toothier?, American Journal of Botany, 83(1), pp. 106-111. https://doi.org/10.2307/2445962
  38. You, K. B. (2010). Geography: a portal to green growth, Journal of Korean Geographical Society, 45(1), pp. 11-25.
  39. You, Y. H., Gi, K. J., Han, D. U., Kwak, Y. S. and Kim, J. H. (1995). Succession and Heterogeneity of Plant Community in Mt. Yongam, Kwangnung Experimental Forest, Journal of Ecology and field biology, 18(1), pp. 89-97. [Korean Literature]

Cited by

  1. Effects of Elevated CO2 and Temperate on the Growth of Endangered Species, Cicuta virosa L. in Korea vol.16, pp.1, 2014, https://doi.org/10.17663/JWR.2014.16.1.011
  2. Effects of elevated CO2 concentration and increased temperature on the growth and crop yield of rice (Oryza sativa) cultivars in Korea -cv. Odaebyeo and cv. Saechucheongbyeo- vol.16, pp.4, 2014, https://doi.org/10.17663/JWR.2014.16.4.363