DOI QR코드

DOI QR Code

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area

농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가

  • Mercado, Jean Margaret R. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Maniquiz-Redillas, Marla C. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Kim, Lee-Hyung (Department of Civil and Environmental Engineering, Kongju National University)
  • ;
  • ;
  • 김이형 (공주대학교 건설환경공학부)
  • Received : 2013.03.12
  • Accepted : 2013.03.19
  • Published : 2013.05.31

Abstract

In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.

농업지역의 소하천에 흐르는 하천수는 유역의 농업활동으로 유출된 각종 영양염류의 함량이 높아 호소 유입시 부영양화의 원인이 된다. 본 연구에서는 농업지역의 하천수를 처리하기 위해 조성된 자유수면형 인공습지의 수문학적 유로에 따른 영양염류의 농도를 평가하고자 수행되었다. 습지내 유로에 따른 영양염류의 농도를 평가하기 위한 모니터링은 2009년 4월부터 2011년 11월까지 습지내 유로의 5개 지점에서 수행되었다. 채취된 시료는 유로에 따른 수질변화를 분석하기 위하여 질소와 인에 대한 집중적 분석이 수행되었다. 습지내 TP 저류의 원인을 평가한 결과 수온, DO 및 pH가 큰 영향을 끼치는 것으로 나타났다. 또한 습지내 유입수가 침강지를 통과한 직후 영양염류의 농도가 가장 크게 저감된 것으로 나타났는데, 이는 많은 양의 영양소가 입자와 부착된 형태로 이동하기 때문인 것으로 판단되기에 향후 습지 설계시 침강지의 기능 증대 방안 도입이 중요한 인자인 것으로 평가된다. 그러나 습지내에서 가장 큰 영양염류 저감이 발생한 지점은 유로의 85% 지점인 것으로 나타났다. 이는 습지내 미생물 및 식생흡입에 의한 영향으로 평가되기에 이를 활성화 하기 위한 얕은 습지 및 깊은 습지의 적절한 배치도 인공습지 설계에서 중요한 인자임을 보여주고 있다. 마지막 침전지 부분에서는 영양염류의 농도가 증가하는 것으로 나타났는데, 이는 길어진 체류시간에 의한 퇴적층으로부터 용출이 원인인 것으로 평가되기에 습지설계시 침전지의 적정한 체류시간 확보가 중요한 것으로 나타났다.

Keywords

References

  1. Cameron, K., Madramootoo, C., Crolla, A. and Kinsley, C. (2003). Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland, Water Research, 37(12), pp. 2803-2812. https://doi.org/10.1016/S0043-1354(03)00135-0
  2. Carpenter, S. R., Caraco, N. F., Correll, D. L. and Howarth, R. W. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecological Applications, 8(3), pp. 559-568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
  3. Cho, J. Y. (2003). Seasonal runoff estimation of N and P in a paddy field of central Korea, Nutrient Cycling in Agroecosystems, 65(1), pp. 43-52. https://doi.org/10.1023/A:1021819014494
  4. DeBusk, T. A. and DeBusk, W. F. (2001). Wetlands for Water Treatment, Applied wetlands science and technology: Boca Raton, Forida, Lewis Publishers, pp. 241-280.
  5. Diaz, F. J., O'Geen, A. T. and Dahlgren, R. A. (2012). Agricultural pollutant removal by constructed wetlands: Implications for water management and design, Agricultural Water Management, 104, pp. 171-183. https://doi.org/10.1016/j.agwat.2011.12.012
  6. Dunne, E. J., Culleton, N., O'Donovan, G., Harrington, R. and Olsen, A. E. (2005). An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water, Ecological Engineering, 24(3), pp. 221-234.
  7. Greenberg, A. E., Clesceri, L. S. and Eaton, A. D. (1992). Standard methods for the examination of water and wastewater, American Public Health Association (APHA), 18th edn.
  8. Ice, G. and Binkley, D. (2003). Forest streamwater concentrations of nitrogen and phosphorus: A comparison with EPAs proposed water quality criteria, Journal of Forestry, 101(1), pp. 21-28.
  9. Jang, T. I., Kim, H. K., Seong, C. H., Lee, E. J. and Park, S. W. (2012). Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture, Agriculture Water Management, 104, pp. 235-243. https://doi.org/10.1016/j.agwat.2011.12.022
  10. Kadlec, R. H. and Reddy, K. R. (2001). Temperature effects in treatment wetlands, Water Environment Research, 73(5), pp.543-557. https://doi.org/10.2175/106143001X139614
  11. Kadlec, R. H. and Wallace, S. D. (2009). Treatment Wetlands. CRC Press Boca Raton.
  12. Kayranli, B., Scholz, M., Mustafa, A., Hofmann, O. and Harrington, R. (2010). Performance evaluation of integrated constructed wetlands treating domestic wastewater, Water, Air & Soil Pollution, 210, pp. 435-451. https://doi.org/10.1007/s11270-009-0267-6
  13. Kang, C., Lee, S. Y., Cho, H. J., Lee, Y., Kim, L. H. (2011). Test-bed evaluation of developed small constructed wetland for using in urban areas, J. of Wetlands Research, 13(3), pp. 455-463 [Korean Literature].
  14. Kim, K. J., Kim, J. S., Kim, L. H., Yang, K. C. (2012). Characteristics of nutrient uptake by aquatic plant in constructed wetlands for treating livestock wastewater, J. of Wetlands Research, 14(1), pp. 121-130 [Korean Literature].
  15. Lee, C. G., Fletcher, T. D. and Sun, G. (2009). Nitrogen removal in constructed wetland systems, Engineering in Life Sciences, 9(1), pp. 11-22. https://doi.org/10.1002/elsc.200800049
  16. Lee, J. Y., Kang, C, Lee, S. Y., Kim, L. H. (2011). Application of free water surface constructed wetland for NPS control in livestock watershed area, J. of Wetlands Research, 13(3), pp. 481-488 [Korean Literature].
  17. Lu, S., Zhang, P., Jin, X., Xiang, C., Gui, M., Zhang, J. and Li, F. (2009). Nitrogen removal from agricultural runoff by full-scale constructed wetland in China, Hydrobiologia, 621(1), pp. 115-126. https://doi.org/10.1007/s10750-008-9636-1
  18. Maltias-Landry, G., Maranger, R., Brisson, J. and Chazarenc, F. (2009). Nitrogen transformations and retention in planted and artificially aerated constructed wetlands, Water Research, 43(2), pp. 535-545. https://doi.org/10.1016/j.watres.2008.10.040
  19. Maniquiz, M. C., Choi, J. Y., Lee, S. Y., Kang, C. G. and Kim, L. H. (2012). System design and treatment efficiency of a surface flow constructed wetland receiving runoff impacted stream water, Water Science and Technology, 65(3), 525-532. https://doi.org/10.2166/wst.2012.869
  20. Nyenje, P. M., Foppen, J. W., Uhlenbrook, S., Kulabako, R. and Muwanga, A. (2010). Eutrophication and nutrient release in urban areas of sub-Saharan Africa, Science of the Total Environment, 408(3), pp. 447-455. https://doi.org/10.1016/j.scitotenv.2009.10.020
  21. Reddy, K. R., Kaldec, R. H., Flaig, E. and Gale, P. M. (1999). Phosphorus retention in streams and wetlands: A review, Critical Reviews in Environmental Science and Technology, 29(1), pp. 83-146. https://doi.org/10.1080/10643389991259182
  22. Sirivedhin, T., and Gray, K. A. (2006). Factors affecting denitrification rates in experimental wetlands: Field and laboratory studies, Ecological Engineering, 26(2), pp. 167-181. https://doi.org/10.1016/j.ecoleng.2005.09.001
  23. Tousignant, E., Fankhauser, O., Hurd, S. and Stantec Consulting Ltd. Research and Technology Transfer Group. (1999). Guidance manual for the design, construction and operations of constructed wetlands for rural applications in Ontario. Canada Program of the Agricultural Adaptation Council, Ontario.
  24. Vymazal, J. (2005). Natural and constructed wetlands: nutrients, metals and management, Backhuys Publishers, Leiden.
  25. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands, Science of the Total Environment, 380(1), pp. 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014
  26. Water Management Information System (WAMIS) (2012). http://www.wamis.go.kr/ENG/WKE_TCLQBB_LST.ASPX. [Korean Literature]
  27. Watson, J. T., Reed, S. C., Kadlec, R. H., Knight, R. L. and Whitehouse, A. E. (1989). Performance expectations and loading rates for constructed wetlands, In: Hammer, D.A. (ed.), Constructed wetlands for Wastewater Treatment. Municipal, Industrial and Agricultural, pp. 319-658.
  28. Wu, H., Zhang J., Wei, R. and Liang, S. (2012). Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes, Environmental Science and Pollution Research, 20(1), pp. 443-451.
  29. Yoon, C. G. (2009). Wise use of paddy rice fields to partially compensate for the loss of natural wetlands, Paddy and Water Environment, 7(4), pp. 357-366. https://doi.org/10.1007/s10333-009-0178-6
  30. Zhang, J., Huang, X., Shi, H. and Hu, H. (2005). Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system, Ecological Engineering, 25(4), pp. 419-428. https://doi.org/10.1016/j.ecoleng.2005.06.011

Cited by

  1. Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent vol.26, pp.6, 2014, https://doi.org/10.1016/S1001-0742(13)60597-5