비인두암 환자에 대한 세기조절 방사선치료 시 이용되는 MVCT와 kV-CBCT의 수정체 흡수선량 평가

Evaluation of the Lens Absorbed Dose of MVCT and kV-CBCT Use for IMRT to the Nasopharyngeal Cancer Patient

  • 최재원 (삼성서울병원 방사선종양학과) ;
  • 김철종 (삼성서울병원 방사선종양학과) ;
  • 박수연 (삼성서울병원 방사선종양학과) ;
  • 송기원 (삼성서울병원 방사선종양학과)
  • Choi, Jae Won (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Cheol Chong (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Su Yeon (Department of Radiation Oncology, Samsung Medical Center) ;
  • Song, Ki Weon (Department of Radiation Oncology, Samsung Medical Center)
  • 투고 : 2013.05.30
  • 심사 : 2013.08.30
  • 발행 : 2013.09.30

초록

목 적: 비인두암(Nasopharyngeal cancer) 환자를 세기조절 방사선치료(IMRT)시 영상유도 촬영(MVCT & kV-CBCT)에서의 수정체 흡수선량(absorbed dose)을 평가하고자 한다. 대상 및 방법: 인체모형팬텀(Anderson rando phantom, Alderson Reserch Laboratories Inc., USA)을 대상으로 전산화 단층촬영(lightspeed ultra 16, General Electric, USA)을 실시하였고 획득되어진 이미지를 비인두암 환자의 치료계획에 동일한 조건으로 토모세라피 치료계획장치(Tomotherapy, Inc, USA)와 선형가속기 치료계획장치(Pinnacle 8.0, philips Medicle System)로 동일하게 수립하였다. 열형광선량계(TLD100 Harshaw USA)를 수정체 위치에 위치시키고 토모세라피 MVCT를 세 가지 조건(fine, normal, coarse)에서 촬영, kV-CBCT를 두 가지 조건(low dose head, standard dose head)에서 각각 좌우 3번씩 반복 측정하였다. 결 과: 토모세라피와 선형가속기를 이용하여 실시한 MVCT와 kV-CBCT 촬영 시 수정체의 흡수선량을 측정한 결과 토모세라피 MVCT에서 coarse의 경우 RT 0.8257 cGy, LT 0.8137 cGy, normal의 경우 RT 1.089 cGy, LT 1.188 cGy, fine의 경우 RT 2.154 cGy, LT 2.082 cGy라는 결과를 얻을 수 있었다. 선형가속기 kV-CBCT에선 standard mode의 경우 RT 0.2875 cGy, LT 0.1676 cGy, Low-dose mode의 경우 RT 0.1648 cGy, LT 0.1212 cGy로 나타났다. MVCT와 kV-CBCT의 최대 차이는 약20배 이상인 것을 알 수 있다. 결 론: kV-CBCT가 MVCT을 통해 영상유도 이미지를 얻는 것보다 수정체 흡수선량만으로 고려하였을 때 세기조절 방사선 치료 시 환자가 치료 이외에 받는 선량을 줄일 수 있다고 판단된다. 또한 동일한 치료 장비라 하더라도 다양한 촬영조건에 따라 선량차이가 있다는 것을 알 수 있다.

Purpose: Quantitative comparative evaluation of the difference in eye lens absorbed dose when measured by MVCT and kV-CBCT, though such a dose was not included in the original IMRT treatment plan for the nasopharyngeal cancer patient. Materials and Methods: We used CT (Lightspeed Ultra 16, General Electric, USA) against an Anderson rando phantom (Alderson Research Laboratories Inc, USA) and established the plan for tomotherapy treatment (Tomotherapy, Inc, USA) and linear accelerator treatment (Pinnacle 8.0, Philips Medicle System) for the achieved CT images on the same condition with the nasopharyngeal cancer patient treatment plan. Then, align the ther-moluminescence dosimeter (TLD100 Harshaw, USA) with the eye lens, shot the lens with Tomotherapy MVCT under 3 conditions (Fine, Normal, and Coarse), and shot both lenses with kV-CBCT under 2 conditions (Low Dose Head and Standard Dose Head) 3 times each. Results: When we analyzed the eye lens absorbed dose according to MVCT and kV-CBCT images by using both Tomotherapy and Pinacle 8.0, we achieved the following result; According to Tomotherapy MVCT, RT 0.8257 cGy in the Coarse mode, LT 0.8137 cGy, RT 1.089 cGy and LT 1.188 cGy in the Normal mode, and RT 2.154 cGy and LT 2.082 cGy in the Fine mode. According to Pinacle 8.0 kV-CBCT, RT 0.2875 cGy and LT 0.1676 cGy in the Standard Dose mode and RT 0.1648 cGy and LT 0.1212 cGy in the Low-Dose mode. In short, the MVCT result was significantly different from that of kV-CBCT, up to 20 times. Conclusion: We think kV-CBCT is more effective for reducing the amount of radiation which a patient is receiving during intensity modulated radiation treatment for other purposes than treatment than MVCT, when we consider the absorbed dose only from the viewpoint of image-guided radiation therapy. Besides, we understood the amount of radiation is too sensitive to the shooting condition, even when we use the same equipment.

키워드

참고문헌

  1. Bak J, Jeong K, Keum KC, Park SW: On-line image guided radiation therapy using Cone-Beam CT (CBCT). J Korean Soc Ther Radiol Oncol 2006;24:294-299
  2. Worgul BV, Merriam GR, Szechter A, et al.: Lens epithelium and radiation cataract. Arch Ophthalmol 1976;94: 996-999 https://doi.org/10.1001/archopht.1976.03910030506013
  3. Radiation Therapy Oncology Group 0539
  4. 나종억, 이도근, 김진수 등: kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선 치료시 흡수선량 및 유효선량에 관한 고찰. 대한방사선치료기술학회지 2009;21:67-74
  5. Jeraj R, Mackie TR, Balog J, et al.: Radiation characteristics of helical tomotherapy. Med Phys 2004;31:396-404 https://doi.org/10.1118/1.1639148
  6. Pawlicki T, Luxton G, Le QT, Findley D, Ma CM: Lens dose in mlc-based IMRT treatments of the head and neck. Int J Radiat Oncol Biol Phys 2004;59:293-299 https://doi.org/10.1016/j.ijrobp.2004.01.019
  7. Rothenberg LN, Pentlow KS: Radiation dose in CT. Radiographics 1992;1225-1243
  8. Hall EJ, Giaccia AJ: Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2006; 181-186
  9. Rehani MM, Vano E, Olivera CB, Kleiman NJ: Radiation and cataract. Radiat Prot Dosim 2011;147:300-304 https://doi.org/10.1093/rpd/ncr299
  10. Kan MW, Leung LH, Wong W, Lam N: Radiation dose from cone beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2008;70:272-279 https://doi.org/10.1016/j.ijrobp.2007.08.062
  11. Sheng K, Molloy JA, Larner JM, Read PW: A dosimetric comparison of non-coplanar IMRT versus Helical Tomotherapy for nasal cavity and paranasal sinus cancer. Int J Radiat Oncol Biol Phys 2006;65:917-923 https://doi.org/10.1016/j.ijrobp.2006.02.038