세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가

Dose Evaluation of TPS according to Treatment Sites in IMRT

  • 김진만 (삼성서울병원 방사선종양학과) ;
  • 김종식 (삼성서울병원 방사선종양학과) ;
  • 홍채선 (삼성서울병원 방사선종양학과) ;
  • 박주영 (삼성서울병원 방사선종양학과) ;
  • 박수연 (삼성서울병원 방사선종양학과) ;
  • 주상규 (삼성서울병원 방사선종양학과)
  • Kim, Jin Man (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Jong Sik (Department of Radiation Oncology, Samsung Medical Center) ;
  • Hong, Chae Seon (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Ju Young (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Su Yeon (Department of Radiation Oncology, Samsung Medical Center) ;
  • Ju, Sang Gyu (Department of Radiation Oncology, Samsung Medical Center)
  • 투고 : 2012.06.19
  • 심사 : 2013.02.15
  • 발행 : 2013.09.30

초록

목 적: 본 연구는 치료계획 시스템인 $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA)과 Eclipse (version 10.0, Varian Medical Systems, USA)을 이용하여 전립선암과 폐암의 세기조절방사선 치료계획시 불균질 부위의 선량 계산 차이를 알고리즘별로 알아보고자 한다. 대상 및 방법: 각 5명의 전립선암 및 폐암 환자를 대상으로, 본원 Protocol에 따른 동일한 조건으로 최적화 계산을 진행하였다. 전립선암 환자의 치료계획은 10 MV, 7Beam을 사용하였으며 2.5 Gy씩 28 fx, 총 70 Gy를 동일 처방하였고, 폐암 환자의 치료계획은 6 MV, 6Beam을 사용하였으며 2 Gy씩 33 fx, 총 66 Gy를 동일 처방하였다. 두 치료계획시스템을 통해 CTV, PTV 및 종양주위의 OAR의 최대선량, 평균선량, 최소선량을 비교하였다. 결 과: 전립선암에서 두 치료계획시스템 모두 CTV와 PTV의 선량변화가 2%이내였으며 종양주변 정상 장기(방광, 대퇴골, 직장)도 선량제약조건을 충족하였다. 폐암에서도 CTV와 PTV는 2%이내의 선량변화를 보였고, 정상 장기(식도, 척수, 양측 폐)도 선량제약 조건을 충족하였다. 하지만, Eclipse 치료계획의 최소선량은 CTV에서 1.9%, PTV에서 3.5% 높았고 양측 폐의 경우 V5 Gy에서 3.0% 높은 차이를 보였다. 결 론: 치료부위에 따른 각각의 치료계획시스템은 본원의 선량제한 조건을 모두 만족하여 임상적 정확성을 확인할 수 있었다. 향후 다양한 부위의 치료계획 연구와 치료계획시스템의 적용은 보다 정확한 치료계획을 위한 방법을 제시할 것이라 사료된다.

Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

키워드

참고문헌

  1. Intensity Modulated Radiation Therapy Collaborative Working Group: Intensity modulated radiotherapy; Current status and issue of interest. Int J Radiation Oncology Biol Phys 2001;51:880-917 https://doi.org/10.1016/S0360-3016(01)01749-7
  2. Ling CC, Burman C, Chui CS, et al.: Conformal radiation treatment of prostate cancer using inversely-planned intensity modulated photon beams produced with dynamic multileaf collimation. Int J Radiation Oncology Biol Phys 1996;35:721-730 https://doi.org/10.1016/0360-3016(96)00174-5
  3. Hedin E, Back A: Influence of different dose calculation algorithms on the estimate of NTCP for lung complications. Med Phys 2013;6:14:127-139
  4. Scholz C, Nill S, Oelfke U: Comparison of IMRT optimization based on a pencil beam and a superposition algorithm. Med Phys 2003;30:1909-1913 https://doi.org/10.1118/1.1586452
  5. Vanderstraeten B, Reynaert N, Paelinck L, et al.: Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 2006;33:3149-3158 https://doi.org/10.1118/1.2241992
  6. Al-Hallaq HA, Reft CS, Roeske JC: The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck. Phys Med Biol 2006; 51:1145-1156 https://doi.org/10.1088/0031-9155/51/5/007
  7. Knoos T, Wieslander E, Cozzi L, et al.: Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 2006;51:5785-5807 https://doi.org/10.1088/0031-9155/51/22/005
  8. Bragg CM, Conway J: Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning. Radiother Oncol 2006;81:315-323 https://doi.org/10.1016/j.radonc.2006.10.020
  9. Christoper MB, Wingate K, Conway J: Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification. Radiother Oncol 2008;86:276-284 https://doi.org/10.1016/j.radonc.2008.01.011
  10. Carrasco P, Jomet N, Duch MA, et al.: Comparision of dose calculation algorithm in phantom with lung equivalent heterogeneities under conditions of lateral disequilibrium. Med Phys 2004;31:2899-2911 https://doi.org/10.1118/1.1788932