DOI QR코드

DOI QR Code

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method

양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성

  • Received : 2013.10.30
  • Accepted : 2013.11.06
  • Published : 2013.11.30

Abstract

The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.

동시 계수 도플러 넓어짐 양전자 소멸 분광법으로 n형과 p형 실리콘 시료에 40.0, 3.98 MeV 에너지를 가진 $0.0{\sim}20.0{\times}10^{13}protons/cm^2$ 양성자 빔 조사에 의한 결함을 측정하여 시료 특성을 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 감마선 스펙트럼의 전자 밀도 에너지에 의한 수리적 해석 방법인 S-변수를 사용하여, 시료의 구조 변화를 측정하였다. 본 연구에서 측정된 S-변수는 시료에 조사된 양성자 조사량의 변화에 따라 결함이 증가하였으며, 그리고 40 MeV 양성자 빔의 세기는 n형 실리콘에서 빔의 조사량 $20.0{\times}10^{13}protons/cm^2$에서 3.98 MeV 보다 결함의 영향이 더 큰 것으로 나타났다. 그 결과 조사에 너지와 조사량의 상관관계를 비교 분석하였다. SRIM 시뮬레이션의 결과는, 양성자의 Bragg 피크 특성 때문에 시료 전체에 대한 결함으로 나타나기 보다는 양성자가 시료의 특정 깊이에 주로 결함을 형성하는 것을 보여 준다.

Keywords

References

  1. K. D. Lee, Y. D. Kim, S. S. Dahiwale, H. Boo, S. Park, S. J. Tark, and D. Kim, J. Korean Vac. Soc. 21, 29 (2012). https://doi.org/10.5757/JKVS.2012.21.1.29
  2. G. P. Willeke, Sol. Energ. Mater. Sol. Cell 72, 191 (2002). https://doi.org/10.1016/S0927-0248(01)00164-7
  3. N. Y. Artyunov, M. Lsayed, R. Rause-Reberg, V. V. Emtsev, G. A. Oganesyan, and V. V. Kozlovski, J. Condes. Matter 25, 035801 (2013). https://doi.org/10.1088/0953-8984/25/3/035801
  4. A. Uedono, Y. K. Cho, S. Tanigawa, and A. Ikari, Jpn. J. Appl. Phys. 33, 1 (1994). https://doi.org/10.1143/JJAP.33.1
  5. S. Dannefaer, P. Mascher, and D. Kerr, J. Appl. Phys. 73, 3740 (1993). https://doi.org/10.1063/1.352905
  6. C. He, M. Muramatsua, T. Ohdairaa, N. Oshimaa, A. Kinomuraa, R. Suzukia, and Y. Kobayashia, Radiation Phys. and Chem. 76, 204 (2007). https://doi.org/10.1016/j.radphyschem.2006.03.036
  7. C. Y. Lee and S. H. Bae, J. Korean Vac. Soc. 19, 489 (2010). https://doi.org/10.5757/JKVS.2010.19.6.489
  8. K. H. Lee and C. Y. Lee, J. Korean Vac. Soc. 20, 367 (2011). https://doi.org/10.5757/JKVS.2011.20.5.367
  9. H. E. Schaefer, R. Wurschum, R. Birringer, and H. Gleiter, Phy. Rev. B 38, 9545 (1988). https://doi.org/10.1103/PhysRevB.38.9545
  10. K. G. Lynn, J. E. Dickman, W. L. Brown, and M. F. Robbins, Phy. Rev. B 20, 3566 (1978).
  11. Z. Jin, G. Niu, J. D. Cressler, C. J. Marshall, P. W. Marshall, H. S. Kim, R. A. Reed, and D. L. Harame, IEEE Transactions on Nuclear Science, 48, 2244 (2001). https://doi.org/10.1109/23.983203
  12. R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors, (Springer, Heidelberg, 1999).
  13. L. S. Vlasenko, M. P. Vlasenko, V. A. Kozlov, V. V. Kozlovskii, Semiconductors 33, 1059 (1999). https://doi.org/10.1134/1.1187864
  14. J. G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Kor. J. Mater. Res. 18, 427 (2008). https://doi.org/10.3740/MRSK.2008.18.8.427
  15. J. J. Kelly and R. M. Lambrecht, Phys. Lett. A 60, 475 (1977). https://doi.org/10.1016/0375-9601(77)90060-3
  16. F. Hori, T. Chijiiwa, R. Oshima, and T. Hisamatsu, Physica B 273, 480 (1999).
  17. N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987). https://doi.org/10.1103/PhysRevB.35.4166
  18. T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1987).
  19. S. Fatima, B. G. Svensson, and C. Jagadish, Conference on Optoelectronic and Micro-electronic Materials And Devices Proceedings, 154 (1996).
  20. R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, and S. Roorda, Nuclear Instr. Meth. Bin Phys. Res. 206, 85 (2003). https://doi.org/10.1016/S0168-583X(03)00686-4
  21. S. Vayrynen, Irradiation of Silicon Particle Detectors with MeV - Protons, (University of Helsinki, Helsinki, 2010).

Cited by

  1. Positron Annihilation Study of Vacancy Type Defects in Ti, Si, and BaSrFBr:Eu vol.25, pp.5, 2016, https://doi.org/10.5757/ASCT.2016.25.5.85