DOI QR코드

DOI QR Code

생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성

Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR)

  • Jeong, Seong-Jin (Department of Environmental Engineering, Changwon National University) ;
  • Seo, Gyu-Tae (Department of Environmental Engineering, Changwon National University) ;
  • Lee, Taek-Soon (Department of Environmental Engineering, Changwon National University)
  • 투고 : 2012.05.03
  • 심사 : 2012.11.30
  • 발행 : 2013.01.30

초록

혐기성 연속 회분식 반응조(Anaerobic sequencing batch reactor; ASBR)를 이용하여 혼합배양을 통한 장기간의 수소생산특성을 조사하였다. 실험에 사용된 기질은 글루코오스(8,250 mg/L)였고, pH 5.5, 온도 $37^{\circ}C$, 교반속도 150 rpm으로 설정하여 160일 동안 반응조를 운전하였다. 운전초기에 F/M비 2로 유지되어 수소생산 수율은 0.8 mol $H_2/mol$ glucose의 수소가 생산되었고, 운전 80일째 수소생산수율은 2.68 mol $H_2/mol$ glucose까지 증가하였다. 그러나 그 이후로 수소 생산량이 지속적으로 감소하여 운전 130일경 이후 수소의 생산은 없는 것으로 나타났다. PCR-DGGE분석을 통해 반응조내 미생물은 일반적인 수소생성 균으로 알려지고 있는 Clostridium sp.가 검출되었으나 반응조 운전 조건의 변화가 수소생산 저감의 주된 원인으로 밝혀졌다. 즉 반응조의 MLSS 농도가 증가함에 따라 F/M비가 감소하고 생산된 수소는 propionic acid의 생성으로 소모되는 것으로 추정할 수 있고 이는 반응조의 F/M비 0.5와 propionic acid 농도는 2,130 mg/L로 높게 유지된 것으로 확인하였다.

Long term hydrogen production was investigated in an anaerobic sequencing batch reactor (ASBR) using mixed microflora. Glucose (about 8,250 mg/L) was used as a substrate for the ASBR operation under the condition of pH 5.5 and $37^{\circ}C$ with mixing at 150 rpm. The experiment was carried out over a period of 160 days. Hydrogen yield was 0.8mol $H_2/mol$ glucose with F/M ratio 2 at initial operation period. The hydrogen yield reached to maximum 2.6 mol $H_2/mol$ glucose at 80th day operation. However decreased hydrogen yield was observed after 80 days operation and eventually no hydrogen yield. Although well-known hydrogen producer Clostridium sp. was detected in the reactor by PCR-DGGE analysis, changed reactor operation was the major reason of the decreased hydrogen production, such as low F/M ratio of 0.5 and high propionic acid concentration 2,130 mg/L. Consequently the long period operation resulted in MLSS accumulation and then low F/M ration stimulating propionic acid formation which consumes hydrogen produced in the reactor.

키워드

참고문헌

  1. Solomon, B. D. and Banerjee, A., "A global survey of hydrogen energy research, development and policy," Energy Policy, 34(7), 781-792(2006) https://doi.org/10.1016/j.enpol.2004.08.007
  2. Fulcheri, L. and Schwob, Y., "From methane to hydrogen, carbon black and water," Int. J. Hydrogen Energy, 20(3), 197-202(1995). https://doi.org/10.1016/0360-3199(94)E0022-Q
  3. Suzuki, Y., "On Hydrogen as Fuel Gas," Int. J. Hydrogen Energy, 7(3), 227-230(1982). https://doi.org/10.1016/0360-3199(82)90085-4
  4. Bockris, J. O. M., "The Economics of Hydrogen as a Fuel," Int. J. Hydrogen Energy, 6(3), 223-241(1981). https://doi.org/10.1016/0360-3199(81)90041-0
  5. Lay, J. J., Lee, Y. J. and Noike, T., "Feasibility of biological hydrogen production from organic fraction of municipal solid waste," Water Res., 33(11), 2579-2586(1999). https://doi.org/10.1016/S0043-1354(98)00483-7
  6. Han, S. K., Kim, H. W. and Shin, H. K., "Enhanced hydrogen fermentation of food waste," J. of KOWREC, 11(4), 105-113(2003).
  7. Lee, J. G., "Evaluation of anaerobic sequencing batch reactor for night soil digestion," Kon-kuk University, The degree of Doctor of Philosophy, (2000).
  8. Yokoi, H. and Maki, R., "Microbial production of hydrogen from starch-manufacturing wastes," Biomass Bioenergy, 22(5), 389-395(2002). https://doi.org/10.1016/S0961-9534(02)00014-4
  9. Jung, K. W., Kim, D. H., Kim, S. H. and Shin, H. S., "Bioreactor design for continuous dark fermentative hydrogen production," Bioresour. Technol., 102(18), 8612-8620(2011). https://doi.org/10.1016/j.biortech.2011.03.056
  10. Ratusznei, S. M., Rodrigues, J. A. D., Camargo, E. F. M., Zaiat, M. and Borzani, W., "Feasibility of a stirred anaerobic sequencing batch reactor containing immobilized biomass for wastewater treatment," Bioresour. Technol., 75(2), 127- 32(2000). https://doi.org/10.1016/S0960-8524(00)00048-1
  11. Kim, D. H., Kim, S. H. and Shin, H. S., "Start-up strategy for continuous fermentative hydrogen production," The 2007 Environmental Societies Joint Conference, Civil & Environmental Engineering, pp. 910-913(2007).
  12. Lin, C. Y. and Lay, C. H., "A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora," Int. J. Hydrogen Energy, 30(3), 285-292 (2005). https://doi.org/10.1016/j.ijhydene.2004.03.002
  13. Choi, G. C., "Standard methods for water quality analysis," DongHwa Technology, (2004)
  14. Kim, G. H., "The production of biohydrogen from mixed culture using anaerobic microorganisms," The Degree of Master of philosophy(2008)
  15. Wang, J. L. and Wan, W., "Comparison of different pretreatment methods for enriching hydrogen-producing cultures from digested sludge," Int. J. Hydrogen Energy, 33(12), 2934- 41(2008). https://doi.org/10.1016/j.ijhydene.2008.03.048
  16. Valentine, R. C., Mortenson, L. E. and Carnahan, J. E., "The hydrogenase system of Clostridium pasteurianum," J. Biol. Chem., 238(3), 1141-1144(1962).
  17. Antonopoulou, G., Gavala, H. K., Skiadas, I. V., Angelopoulos, K. and Lyberatos, G., "Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass." Bioresour. Technol., 99, 110-119(2007).
  18. Wang, L., Zhou, Q. and Li, F. T., "Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production," Biomass Bioenergy, 30(2), 177-182(2006). https://doi.org/10.1016/j.biombioe.2005.11.010
  19. Kim, S. H., Han, S. G. and Shin, H. S., "Continuous anaerobic H2 production with a mixed culture," J. of KOWREC, 11(1), 70-76(2003)
  20. Kang, M. Y., "Optimum condition for hydrogen fermentation of organic waste," Daegu University, The Degree of Master of philosophy (2006)
  21. Lin, C. Y. and Jo, C. H., "Hydrogen production from sucrose using anaerobic sequencing batch reactor process," J. Chem. Technol. Biotechnol., 78(6), 678-684(2003). https://doi.org/10.1002/jctb.848
  22. Saraphirom, P. and Reungsang, A., "Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR)," Int. J. Hydrogen Energy, 36(14), 8765-8733(2011). https://doi.org/10.1016/j.ijhydene.2010.08.058
  23. Fang, et. al., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82, 87-93 (2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  24. Zhang, Z. P., Show, K. Y., Tay, J. H., Liang, D. T., Lee, D. T. and Jiang, W. J., "Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation," Biotechnol. Bioeng., 96(6), 1040- 1050(2007). https://doi.org/10.1002/bit.21243
  25. Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L. and Noike, T., "Enhancement of hydrogen production from glucose by nitrogen gas sparging," Bioresour. Technol., 73(1), 59-65(2000). https://doi.org/10.1016/S0960-8524(99)00130-3
  26. Takeno, k., Nakashimada, Y., Kakizono, T. and Nishio, N., "Methane fermentation of coastal mud sediment by a twostage upflow anaerobic sludge blanket (UASB) reactor system," Appl. Microbiol. Biotechnol., 56(1), 280-285(2001). https://doi.org/10.1007/s002530100629
  27. Sung, S. and Dague, R. R., "Laboratory studies on the anaerobic sequencing batch reactor," Water Environ. Res., 67 (3), 294-301(1995). https://doi.org/10.2175/106143095X131501
  28. Sung. S., Raskin. L., Duangmanee. T., Padmasiri. J. and Simmons. J. J., "Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments," In Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405(2002).
  29. Nasr, N., Elbeshbishy, E., Hafez, H. and Nakhla, G., "Biohydrogen production from thin stillage using conventional and acclimatized anaerobic digester sludge," Int. J. Hydrogen Energy, 36(20), 12761-12769(2011). https://doi.org/10.1016/j.ijhydene.2011.07.032

피인용 문헌

  1. Hydrogen Production in the Anaerobic Treatment of Domestic-Grade Synthetic Wastewater vol.7, pp.12, 2015, https://doi.org/10.3390/su71215814
  2. Concentration, Sources, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Sediments Obtained from Near Gwangan Bridge vol.40, pp.10, 2018, https://doi.org/10.4491/KSEE.2018.40.10.379