DOI QR코드

DOI QR Code

산·알칼리 전처리를 통한 제당 폐수의 생물학적 수소생산

Biological Hydrogen Production By Pre-treatment of Sugar Wastewater Using Acidic or Alkaline Chemicals

  • 이태진 (서울과학기술대학교 환경공학과)
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 투고 : 2012.10.25
  • 심사 : 2012.12.01
  • 발행 : 2013.01.30

초록

제당폐수를 산 또는 알카리 전 처리한 후 생물학적 수소생산율과 유기산의 생성특성을 평가하였다. 제당 폐수의 수소발생량은 산 전처리된 경우 보다 알칼리 전처리된 시료에서 약 70%의 발생량 증가를 나타내었다. 또한 제당폐수 원액에 적절한 영양염류(질소 인)를 공급하였을 때 보다 양호한 수소생성률을 보여주었다. 제당폐수의 혐기발효에 있어서 탄수화물의 분해와 수소생성의 직접적인 연관성은 나타나지 않았다. Butyric acid/Acetic acid (B/A)비와 수소생산의 연관성을 살펴보았을 때, 영양염류를 첨가한 제당폐수는 순수 제당폐수보다 B/A비가 약 3배 증가하였으며 알카리 전처리와 영양염류를 첨가한 시료에서 B/A비가 4.02로 가장 높게 나타났다. 실험에 사용된 전체 시료에서 B/A비가 클수록 수소생성률이 높았다.

Characteristics of biological hydrogen production rate and organic acid under anaerobic fermentation process were investigated with sugar wastewater. Hydrogen production rate was higher with alkaline pre-treatment than acidic pre-treatment, resulting in 70% increment. An adequate supply of the nutrients (N or P) into raw sugar wastewater could increase hydrogen production rate. Carbohydrate degradation of the anaerobic fermentation process was not directly related with hydrogen production. Sugar wastewater with the addition of the nutrients shows 3 times higher B/A ratio than the raw sugar wastewater. B/A ratio of the wastewater with alkaline pre-treatment and nutrients addition was most higher than other samples, showing 4.02 of B/A ratio. Higher B/A ratio shows higher hydrogen production rate at each sample.

키워드

참고문헌

  1. Momirlan, M. and Veziroglu, T. N., "Recent directions of world hydrogen production," Renew. Sust. Energy Rev., 3, 219-231(1999). https://doi.org/10.1016/S1364-0321(98)00017-3
  2. Debabrata, D. and Veziroglu, T. N., "Hydrogen production by biological processes: a survey of literature," Int. J. Hydrogen Energy, 26, 13-28(2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Rifkin, J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth," Penguin Putnam, New Work, NY US, 15-17(2002).
  4. Mizuno, O., Ohara, T., Shinya, M. and Noike, T., "Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora," Water Sci. Technol., 42(3), 345-350(2000).
  5. Jiunn, J. L., Lee, Y. J. and Tatsuya, N., "Feasibility of biological hydrogen production from organic fraction of municipal solid waste," Water Res., 33, 2579-2586(1999). https://doi.org/10.1016/S0043-1354(98)00483-7
  6. Kang, J.-H., Kim, D.-K. and Lee, T.-J., "Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment," Bioresour. Technol., 109, 239-243(2012). https://doi.org/10.1016/j.biortech.2012.01.048
  7. Ozkan, L., Tuba, H. E. and Goksel, N. D., "Effects of pretreatmentmethods on solubilization of beet-pulp and bio-hydrogen production yield," Int. J. Hydrogen Energy, 36(1), 382-389(2011). https://doi.org/10.1016/j.ijhydene.2010.10.006
  8. Jun, Y. S., Joe, Y. A. and Lee T. J. "Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater," J. Kor. Soc. Environ. Eng., 31(2), 139-146 (2009).
  9. Lee, I. G., "Hydrogen production by SCWG treatment of the wastewater from molasse fermentation, Eco-II Project Final report," Korea Institute of Energy Research(2008).
  10. Logan, B. E., OH, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci. Technol., 36, 2530-2535(2002) https://doi.org/10.1021/es015783i
  11. Samir K. K., Chen, W.-H., Li, L. and Sung, S.-H., "Biological hydrogen production: effects of pH and intermediate products," Int. J. Hydrogen Energy, 29, 1123-1131(2004).
  12. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7, 695-699(2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  13. Mannix, S. P., Shin, H., Masaru, H., Rumiko, S., Chie, Y., Koichiro, H., Masaharu, I. and Yasuo, I., "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter," J. Biosci. Bioeng., 91(2), 159- 165(2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  14. Narendra K., Debabrata D., "Enhancement of hydrogen production by Enterobactor cloacae IIT-BT 08," Proc. Biochem., 35, 589-593(2000). https://doi.org/10.1016/S0032-9592(99)00109-0
  15. Zajic, J. E., N. Kosaric and J. D. Brosseau, "Microbial production of hydrogen," Adv. Biochem. Eng., 7, 57-109, (1978).
  16. Lowry, O. H., Rasebrough, N. J., Farr, A. L. and Randall, R. J., "Protein measurement with Folin phenol reagent," J. Biol. Chem., 193, 265-275(1951).
  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., "Colorimetric method for determination of sugars and related substances," Anal. Chem., 28(3), 350-356, (1956). https://doi.org/10.1021/ac60111a017
  18. Miller, G. L., "Use of dinitrosalicylic acid reagent for determination of reducing sugar," Anal. Chem., 31, 426-428 (1959). https://doi.org/10.1021/ac60147a030
  19. APWA, AWWA, WPCF, "Standard methods for the examination of water and wastewater," 20th ed., 1999.
  20. Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., Liao, C. S. and Tay, J. H. "Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation," Water Res., 37(11), 2789-2793(2003). https://doi.org/10.1016/S0043-1354(03)00004-6
  21. Wang, C. C., Chang, C. W., Chu, C. P. and Lee, D. J., Chang, B. V. and Liao, C. S. "Producing hydrogen from wastewater sludge by Clostridium hifermentans," J. Biotechnol., 102, 83-92(2003). https://doi.org/10.1016/S0168-1656(03)00007-5
  22. Cai, M. L., Liu, J. X. and Wei, Y. S., "Enhanced biohydrogen production from sewage sludge with alkaline pretreatment," Environ. Sci. Technol., 38, 3195-3202(2004). https://doi.org/10.1021/es0349204
  23. Jun, Y. S., Lee, K. Y., Joe, Y. A. and Lee, T. J, "Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs," J. Kor. Soc. Environ. Eng., 30(12), 1239-1244(2008).
  24. Park, J. I. and Lee, T. J., "Changes of Microbial Community Depending on Different Dissolved Oxygen in Biological Nitrogen Removal Process," J. Kor. Soc. Environ. Eng., 30 (9), 939-947(2008).
  25. Shin, J. H. and Park, T. H., "Biological Hydrogen Production Processes," Kor. Chem. Eng. Res., 44(1), 16-22(2006).
  26. Kim, M. S., Moon, K. W., Lee, I. G., Lee, T. J. and Sung, C. K., "Hydrogen Gas Production by Fermentation from Various Sugars Using Clostridium butyricum NCIB 9576," Korean J. Appl. Microbiol. Biotechnol., 27(1), 62-69(1999).
  27. Leclere, M., Bernalier, A., Donadille, G. and Lelait M., "$H_2/CO_2$ metabolism in acetogenic bacteria isolated from the human colon," Anaerobe, 3, 307-315(1997). https://doi.org/10.1006/anae.1997.0117
  28. Morvan, B., Rieu-Lesme, F., Fonty, G. and Gouet, P. "In vitro interactions between rumen $H_2$-utilizing acetogenic and sulfate-reducing bacteria," Anaerobe, 2, 175-180(1996). https://doi.org/10.1006/anae.1996.0023
  29. Lee S. M., Park, J. Y. and An, J. S., "The Study on the Alcohol Production from Organic Wastes by Anaerobic Digestion(I)," J. of KSWM, 3(2), 49-64(1986).