DOI QR코드

DOI QR Code

특정용제 Target 형 활성금속첨착 활성탄소섬유의 개발(II)

Development of Metal Loaded Activated Carbon Fiber for Eliminating Targeted VOCs Originated from Solvent(II)

  • 투고 : 2013.03.29
  • 심사 : 2013.06.25
  • 발행 : 2013.07.30

초록

기존 흡착제들보다 우수한 흡착성능을 확보하고, 특히 특정한 용제에 대한 흡착성능을 극대화하기 위하여 활성탄소섬유를 기본흡착제로 적용하였고, 여기에 활성금속을 첨착시켜 흡착성능과 선택성을 제고하고자 하였다. 선행 연구를 통하여 선정된 Cu, Cr을 기본 활성금속으로 하고 여기에 활성보조금속으로서 Pt, Pd를 복합 첨착시킨 활성탄소섬유를 첨착온도 및 시간을 변수로 하여 제조하였다. 복합첨착 활성탄소섬유의 흡착 성능이 단일첨착 활성탄소섬유와 비교하여 향상되었으며, 첨착온도 $100^{\circ}C$, 첨착시간 5시간 조건에서 최상의 흡착 성능을 확인할 수 있었다. Cu-Cr-Pt-Pd 복합첨착 활성탄소섬유가 가장 뛰어난 흡착성능을 보였으며, 기존 활성탄소섬유보다 2배 이상의 높은 흡착성능을 확인하였다. 한편, 활성금속첨착 활성탄소섬유상에의 확산 및 흡착에 필요한 최소 접촉시간은 0.5초 이상은 유지해야 함을 확인 할 수 있었다.

Cu and Cr as a base metal and Pt, Pd as a supportive metal were selected for improving adsorption capacity of activated carbon fiber in eliminating especially targeted VOCs. Preparing variables such as metal loading, loading temperature, loading hours and kinds of loaded metals were changed. Properties measurement was carried out by SEM (scanning electron microscope), XRF (x-ray fluorescence analysis) and EDX (Energy Dispersive X-ray spectrometer) and adsorption capacity evaluation were also performed by gas analyzer. Under this study, the adsorption capacity of complex metal loaded activated carbon fiber was improved positively than that of single metal loaded activated carbon fiber. And we found that the best conditions for metal loading were 5 hours loading time at $100^{\circ}C$ and the adsorption capacity was enhanced almost double compared with other condition based activated carbon fiber. Cu-Cr-Pt-Pd loaded activated carbon fiber showed the best adsorption capacity. Also we confirmed that more than 0.5 second is necessary for adsorbate diffusion and adsorption over activated carbon fiber.

키워드

참고문헌

  1. Kim, S. G. and Chang, Y. R., "A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave," J. Kor. Soc. Atm. Environ., 25(2), 122-132(2009). https://doi.org/10.5572/KOSAE.2009.25.2.122
  2. Kim, J. D., Kim, J. H., Kim, C. B. and Park, Y. T., "Manufacture and Adsorption Characteristics of Coconut based Impregnated Activated Carbon for Toxic Gas," KSEE Spring Academic Research Conference, KAIST, pp. 1333-1334 (2003).
  3. Kim, K. H. and Shin, C. S., "Adsorption Characteristics of Impregnated Activated Carbon Fiber for the Removal of Hydrogen Sulfide at the Working Environment," J. Kor. Soc. Saf., 14(3), 127-133(1999).
  4. Moon, S. H. and Shim, J. W., "Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition," J. Kor. Soc. Environ. Eng., 27(6), 614-619(2005).
  5. Kim, H. S., Jang, H. S., No, T. M., Jo, S. D. and Park, Y. S., "Adsorption Characteristics of Volatile Organic Compounds on Activated Carbon Fiber," KSEE Fall Academic Research Conference Paper Abstracts, pp. 575-576(1998).
  6. Sakoda, A., Suzuki, M., Hirai, R. and Kawazoe, K., "Trihalomethane adsorption on activated carbon fibers," Water Res., 25(2), 219-225(1991). https://doi.org/10.1016/0043-1354(91)90032-L
  7. Miura, K., "Performance of molecular sieving carbon with controlled micropores," Catal. Soc. Jpn., 41(1), 25-30(1999).
  8. Choi, K. Y., Kim, K. S. Kim, T. W., Jun, M. K. and Park, H. K., "Development of metal loaded activated carbon fiber for eliminating targeted VOCs originated from solvent," J. Kor. Soc. Environ. Eng., 35(1), 31-37(2013). https://doi.org/10.4491/KSEE.2013.35.1.031
  9. Verma, S. K. and Walker P. L. Jr., "Alteration of molecular sieving properties of microporous carbons by heat treatment and carbon gasification," Carbon, 28(1), 175-184(1990). https://doi.org/10.1016/0008-6223(90)90111-B
  10. Hu, Z. and Vansant, E. F., "Carbon molecular sieves produced from walnut shell," Carbon, 33(5), 561-567(1995). https://doi.org/10.1016/0008-6223(94)00141-L
  11. Kawabuchi, Y., Kawano, S. and Mochida, I., "Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene," Carbon, 34(6), 711-717(1996). https://doi.org/10.1016/0008-6223(95)00173-5
  12. Ryu, S. K., "Porosity of Activated Carbon Fibers," High Temperature-High Pressure, 22(4), 345-354(1990).
  13. Kawabuchi, Y., Kishino M., Kawano, S., Whitehurst, D. D. and Mochida, I., "Carbon deposition from benzene and cyclohexane onto active carbon fiber to control its pore size," Langmuir., 12(17), 4281-4285(1996). https://doi.org/10.1021/la960292a
  14. Freitas, M. M. A. and Figueiredo, J. L., "Preparation of carbon molecular sieves for gas separations by modification of the pore sizes of activated carbons," Fuel, 80, 1-6(2001). https://doi.org/10.1016/S0016-2361(00)00066-1
  15. Oya, A., Yoshida, S., Monge, J. A. and Solano, A. L., "Preparation and properties of an antibacterial activated carbon fiber containing mesopores," Carbon, 34(5), 53-57(1996). https://doi.org/10.1016/0008-6223(95)00134-4