DOI QR코드

DOI QR Code

Neighbor Discovery Protocol Based on Inhibited and Priority Access Controls for Multihop Cellular Networks

멀티홉 셀룰러 네트워크에서 억제 및 우선순위 접속 제어기반의 이웃노드 탐색 프로토콜

  • Choi, Hyun-Ho (Department of Electrical, Electronic and Control Engineering, Hankyong National University)
  • Received : 2013.09.25
  • Accepted : 2013.10.30
  • Published : 2013.11.30

Abstract

In multihop cellular network environments, the mobility of nodes is a major obstacle to find a reliable routing path between a mobile node (MN) and the access node (AN). Therefore, in this paper, we propose a fast and reliable neighbor discovery protocol that enables the fast and reliable neighbor discovery by considering the node mobility in the multihop cellular network. The proposed neighbor discovery protocol inhibits the transmission of unnecessary control messages to quickly find a suitable neighbor node (NN) and performs a priority-based access control to transmit control messages without collision in the order of NN desirable to be selected. Simulation results show that the proposed neighbor discovery protocol can discover the NNs faster than the conventional scheme and select a more reliable relay node although the number of neighbor nodes increases and the node mobility increases.

멀티홉 셀룰러 네트워크 환경에서 노드의 이동성은 이동 노드와 액세스 노드 사이에 안정적인 경로를 찾고 유지하는데 악영향을 미친다. 따라서 본 논문에서는 멀티홉 셀룰러 네트워크 환경에서 단말의 이동성을 고려하여 빠르고 신뢰할 수 있는 이웃노드 탐색 프로토콜을 제안한다. 제안하는 이웃노드 탐색 프로토콜은 적합한 이웃노드를 신속하게 찾기 위해 각 링크 간 품질을 비교하여 불필요한 제어 메시지의 송수신을 막고, 선택 가능성이 높은 이웃노드 순으로 충돌 없이 제어 메시지를 전달 할 수 있도록 우선순위 기반 접속 제어를 수행한다. 시뮬레이션 결과, 제안한 이웃노드 탐색 프로토콜은 기존 방식보다 빠른 시간 내에 이웃노드를 찾을 수 있으며, 검색해야 하는 이웃노드 수가 증가하거나 노드의 이동성이 증가함에도 불구하고 더 좋은 중계 노드를 선택할 수 있다.

Keywords

References

  1. Long Le and E. Hossain, "Multihop Cellular Networks: Potential Gains, Research Challenges, and a Resource Allocation Framework," IEEE Communications Magazine, vol. 45, no. 9, pp. 66-73, Sep. 2007.
  2. J. Gozalvez and B. Coll-Perales, "Experimental evaluation of multihop cellular networks using mobile relays," IEEE Communications Magazine, vol. 51, no. 7, July 2013.
  3. Kan Zheng, Bin Fan, Zhangchao Ma, Guangyi Liu, Xiaodong Shen, and Wenbo Wang, "Multihop cellular networks toward LTE-advanced," IEEE Vehicular Technology Magazine, vol. 4, no. 3, pp. 40 - 47, Sep. 2009. https://doi.org/10.1109/MVT.2009.933474
  4. D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, "Device-to-device communications with Wi-Fi Direct: overview and experimentation," IEEE Wireless Communications, vol. 20, no. 3, June 2013.
  5. Daquan Feng, Lu Lu, Yi Yuan-Wu, G. Y. Li, Gang Feng, and Shaoqian Li, "Device-to-Device Communications Underlaying Cellular Networks," IEEE Transactions on Communications, vol. 61, no. 8, pp. 3541-3551, Aug. 2013. https://doi.org/10.1109/TCOMM.2013.071013.120787
  6. K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, "Device-to-device communication as an underlay to LTE-advanced networks," IEEE Communications Magazine, vol. 47, no. 12, pp. 42-49, Dec. 2009.
  7. P.P. Lam and S.C. Liew, "Nested Network Mobility on the Multihop Cellular Network," IEEE Communications Magazine, vol. 45, no. 9, pp. 100-104, Sep. 2007.
  8. Tang Zhiyong and W. Dargie, "A mobility-aware medium access control protocol for wireless sensor networks," in Proceeding of the IEEE GLOBECOM Workshops, Miami, FL, pp. 109-114, 2010.
  9. G. Jakllari, W. Luo, and S.V. Krishnamurthy, "An Integrated Neighbor Discovery and MAC Protocol for Ad Hoc Networks Using Directional Antennas," IEEE Transactions on Wireless Communications, vol. 6, no. 3, pp. 1114-1024, March 2007. https://doi.org/10.1109/TWC.2007.05471
  10. L. Hanzo and R. Tafazolli, "A Survey of QoS Routing Solutions for Mobile Ad Hoc Networks," IEEE Communications Surveys & Tutorials, vol. 9, no. 2, pp. 50-70, July 2007.
  11. S. Vasudevan, M. Adler, D. Goeckel, and D. Towsley, "Efficient Algorithms for Neighbor Discovery in Wireless Networks," IEEE/ACM Transactions on Networking, vol. 21, no. 1, pp. 69-83, Feb. 2013. https://doi.org/10.1109/TNET.2012.2189892
  12. Guobao Sun, Fan Wu, Xiaofeng Gao, Guihai Chen, and Wei Wang, "Time-Efficient Protocols for Neighbor Discovery in Wireless Ad Hoc Networks," IEEE Transactions on Vehicular Technology, vol. 62, no. 6, pp. 2780-2791, July 2013. https://doi.org/10.1109/TVT.2013.2246204
  13. F. Buiati, L.J. Garcia Villalba, D. Corujo, J. Soares, S. Sargento, and Rui L. Aguiar, "Hierarchical Neighbor Discovery Scheme for Handover Optimization," IEEE Communications Letters, vol. 14, no. 11, pp. 1020-1022, Nov. 2010. https://doi.org/10.1109/LCOMM.2010.092310.100711
  14. H. C. Chao, et al., "Micro-mobility mechanism for smooth handoffs in an integrated ad-hoc and cellular IPv6 network under high-speed movement," IEEE Trans. on Vehicular Technology, vol. 52, pp. 1576-1593, Nov. 2003. https://doi.org/10.1109/TVT.2003.819450
  15. W. Zirwas, E. Schulz, T. Weber, and Y. Liu, "Deployment Considerations for Cellular Multihop Networks," in Proceeding of the 11th European Wireless Conference, Nicosia, Cyprus, pp. 1-7, April 2005.
  16. Jianhua He, Kun Yang, K. Guild, and Hsiao-Hwa Chen, "Application of IEEE 802.16 Mesh Networks as the Backhaul of Multihop Cellular Networks," IEEE Communications Magazine, vol. 45, no. 9, pp. 82-90, Sep. 2007.
  17. Shanshan Lu, S. Shere, Yanliang Liu, and Yonghe Liu, "Device discovery and connection establishment approach using Ad-Hoc Wi-Fi for opportunistic networks," in Proceeding of the IEEE Int. Conf. of Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, pp. 461-466, March 2011.
  18. IEEE Std 802.11-2012, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Computer Society, 29 March 2012.
  19. Recommendation ITU-R M.1225, Guidelines for evaluation of radion transmission technologies for IMT-2000, ITU-R, 1997.

Cited by

  1. Block combination–based asynchronous wake-up schedule in wireless sensor networks vol.13, pp.10, 2017, https://doi.org/10.1177/1550147717736026