DOI QR코드

DOI QR Code

전도성 후면층을 이용한 2D 배열 초음파 트랜스듀서의 설계 및 제작

Design and Fabrication of 2D Array Ultrasonic Transducers with a Conductive Backer

  • 투고 : 2013.07.09
  • 심사 : 2013.08.29
  • 발행 : 2013.11.30

초록

본 논문에서는 1-3 복합체 형태의 전도성 후면층을 이용한 2D 배열 초음파 트랜스듀서를 설계 및 제작하고 그 특성을 평가하였다. 1-3 복합체 형태의 전도성 후면층은 일반적인 재료를 사용해 널리 쓰이는 1-3 복합체 공정을 통하여 제작되었다. 본 연구의 대상이 되는 2D 배열 트랜스듀서는 4,096개의 구동 소자로 이루어져 있고, 각 소자의 중심주파수 및 비대역폭은 각각 3.5 MHz 및 60 % 이상을 목표로 설계하였다. 제작된 트랜스듀서는 중심주파수 및 비대역폭 목표치를 만족하였으며, 전체 구동 소자간의 특성도 0.81 dB 이내로 균일하였다. 따라서 본 연구에서 제시한 전도성 후면층의 2D 배열 초음파 트랜스듀서에 대한 적용 가능성이 검증되었다.

In this paper, 2D array transducers using a conductive backer similar to 1-3 composites have been designed, fabricated, and evaluated. The conductive backer was based on well known manufacturing process of 1-3 composites with affordable ingredients. The 2D array transducer had 4,096 elements designed to have 3.5 MHz center frequency and a fractional bandwidth over 60 %. Fabricated prototype of the transducer satisfied the specifications in the center frequency and bandwidth. Performance over the entire elements was so uniform that the standard deviation was less than 0.81 dB. Thus applicability of the conductive backer proposed in this work to 2D array transducers was verified.

키워드

참고문헌

  1. D. G. Wildes and L. S. Smith, "Advanced ultrasound probes for medical imaging," AIP Conf. Proc. 1430, 801-808 (2012).
  2. J. Blancher, C. Leger, and L. D. Nguyen, "Time-varing, 3D echocardiography using a fast-rotation probe," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 634-639 (2004).
  3. S. Tezuka, S. Hashimoto, T. Togasaki, Y. Miyajima, and Y. Seo, "A two-dimensional array probe that has a huge number of active channels," in Proc. IEEE Ultrason. Symp., 960-963 (2003).
  4. T. R. Nelson, "Three-dimensional ultrasound imaging," in Proc. UIA Annu. Meet., 1-5 (2006).
  5. C. E. M. Demore, A. W. Joyce, K. Wall, and G. R. Lockwood, "Real-time volume imaging using a crossed electrode array," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1252-1261 (2009). https://doi.org/10.1109/TUFFC.2009.1167
  6. J. Woo and Y. Roh, "Ultrasonic 2D matrix array transducer for volumetric imaging in real time," in Proc. IEEE Ultrason. Symp., 1568-1571 (2012).
  7. S. W. Smith, G. E. Trahey, and O. T. von Ramm, "Two-dimensional arrays for medical ultrasound," in Proc. IEEE Ultrason. Symp., 625-628 (1991).
  8. M. Eames, S. Zhou, and J. Hossack, "High element count (3600), fully sampled, two dimensional transducer array," in Proc. IEEE Ultrason. Symp., 2243-2246 (2005).
  9. M. D. C. Eames and J. A. Hossack, "Fabrication and evaluation of fully-sampled, two-dimensional transducer array for "sonic window" imaging system," Ultrasonics 48, 376-383 (2008). https://doi.org/10.1016/j.ultras.2008.01.011
  10. M. Greenstein, P. Lum, H, Yoshida, and M. S. S. Bolorforosh, "A 2.5 MHz 2D array with Z-axis electrically conductive backing," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 970-977 (1997). https://doi.org/10.1109/58.655621
  11. L. Ratsimandresy, N. Felix, D. Dinet, and R. Dufait, "2D arrays performances optimization to address high quality volumetric imaging," in Proc. IEEE Ultrason. Symp., 657-660 (2005).
  12. D. Pei and Y. Roh, "Design of an underwater Tonpilz transducer with 1-3 piezocomposite materials," Jpn. J. Appl. Phys. 47, 4003-4006 (2008). https://doi.org/10.1143/JJAP.47.4003
  13. W. Lee, S. Lee, and Y. Roh, "Optimal design of a piezoelectric 2D array transducer to minimize the cross talk between active elements," in Proc. IEEE Ultrason. Symp., 2738-2741 (2009).