DOI QR코드

DOI QR Code

A Robust Optimization Method Utilizing the Variance Decomposition Method for Electromagnetic Devices

  • Wang, Shujuan (Department of Electrical Engineering, Harbin Institute of Technology) ;
  • Li, Qiuyang (Department of Electrical Engineering, Harbin Institute of Technology) ;
  • Chen, Jinbao (Department of Electrical Engineering, Harbin Institute of Technology)
  • Received : 2014.07.06
  • Accepted : 2014.11.01
  • Published : 2014.12.31

Abstract

Uncertainties in loads, materials and manufacturing quality must be considered during electromagnetic devices design. This paper presents an effective methodology for robust optimization design based on the variance decomposition in order to keep higher accuracy of the robustness prediction. Sobol' theory is employed to estimate the response variance under some specific tolerance in design variables. Then, an optimal design is obtained by adding a criterion of response variance upon typical optimization problems as a constraint of the optimization. The main contribution of this paper is that the proposed method applies the variance decomposition to obtain a more accurate variance of the response, as well save the computational cost. The performance and robustness of the proposed algorithms are investigated through a numerical experiment with both an analytic function and the TEAM 22 problem.

Keywords

References

  1. K. L. Tsui, IIE Trans. 24, 44 (1992). https://doi.org/10.1080/07408179208964244
  2. Z. Ren, M. T Pham, M. Song, D. H. Kim, and C. S. Koh, IEEE Trans. Magn. 47, 1254 (2011). https://doi.org/10.1109/TMAG.2010.2080664
  3. Y. Yao, J. S. Ryu, C. S. Koh, and D. Xie, IEEE Trans. Magn. 40, 1200 (2004). https://doi.org/10.1109/TMAG.2004.824578
  4. N. K. Kim, D. H. Kim, D. W. Kim, H. G. Kim, D. A. Lowther, and J. K. Sykulski, IEEE Trans. Magn. 46, 3117 (2010). https://doi.org/10.1109/TMAG.2010.2043719
  5. Z. Ren, D. Zhang, and C. S. Koh, IEEE Trans. Magn. 49, 2109 (2013). https://doi.org/10.1109/TMAG.2013.2239982
  6. J. H. Ko, J. K. Byun, J. S. Park, and H. S. Kim, IEEE Trans. Magn. 47, 1258 (2011). https://doi.org/10.1109/TMAG.2010.2081663
  7. X. J. Lu, H. X. Li, and C. L. Philip Chen, J. Mech. Des. 132, 064502 (2010). https://doi.org/10.1115/1.4001669
  8. A. Ambrisi, A. Formisano, and R. Martone, IEEE Trans. Magn. 46, 2747 (2010). https://doi.org/10.1109/TMAG.2010.2043937
  9. A. Saltelli, S. Tarantola, and K. P.-S. Chan, Technometrics 41, 39 (1999). https://doi.org/10.1080/00401706.1999.10485594
  10. I. M. Sobol, Math. Comput. Simul. 55, 271 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6
  11. S. R. Arwade, M. Moradi, and A. Louhghalam, Eng. Struct. 32, 1 (2010). https://doi.org/10.1016/j.engstruct.2009.08.011
  12. E. Quaglietta and V. Punzo, Transport. Res. C-EMER 34, 38 (2013). https://doi.org/10.1016/j.trc.2013.05.007
  13. H. Sathyanarayanamurthy and R. B. Chinnam, Comput. Ind. Eng. 57, 996 (2009). https://doi.org/10.1016/j.cie.2009.04.003
  14. T. J. Harris and W. Yu, J. Process Contr. 20, 195 (2010). https://doi.org/10.1016/j.jprocont.2009.08.001
  15. P. S. Shim, S. H. Woo, and C. S. Koh, IEEE Trans. Magn. 45, 1214 (2009). https://doi.org/10.1109/TMAG.2009.2012565
  16. S. L. Ho, S. Y. Yang, P. H. Ni, and K. F. Wong, IEEE Trans. Magn. 43, 1593 (2007). https://doi.org/10.1109/TMAG.2006.892107
  17. G. L. Soares, R. L. S. Adriano, C. A. Maia, L. Jaulin, and J. A. Vasconcelos, IEEE Trans. Magn. 45, 1028 (2009). https://doi.org/10.1109/TMAG.2009.2012563

Cited by

  1. Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm vol.21, pp.4, 2016, https://doi.org/10.4283/JMAG.2016.21.4.660