DOI QR코드

DOI QR Code

Deletion of the Lmna Gene Induces Growth Delay and Serum Biochemical Changes in C57BL/6 Mice

  • Ruan, J. (Department of Clinical Laboratory, Chongqing Medical University) ;
  • Liu, X.G. (Institute of Aging Research, Guangdong Medical College) ;
  • Zheng, H.L. (Institute of Aging Research, Guangdong Medical College) ;
  • Li, J.B. (Institute of Aging Research, Guangdong Medical College) ;
  • Xiong, X.D. (Institute of Aging Research, Guangdong Medical College) ;
  • Zhang, C.L. (Department of Clinical Laboratory, Chongqing Medical University) ;
  • Luo, C.Y. (Institute of Laboratory Medicine, Guangdong Medical College) ;
  • Zhou, Z.J. (Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong) ;
  • Shi, Q. (Department of Clinical Laboratory, Chongqing Medical University) ;
  • Weng, Y.G. (Department of Clinical Laboratory, Chongqing Medical University)
  • Received : 2013.05.06
  • Accepted : 2013.08.28
  • Published : 2014.01.01

Abstract

The A-type lamin deficient mouse line ($Lmna^{-/-}$) has become one of the most frequently used models for providing insights into many different aspects of A-type lamin function. To elucidate the function of Lmna in the growth and metabolism of mice, tissue growth and blood biochemistry were monitored in Lmna-deficient mice, heterozygous ($Lmna^{+/-}$) and wide-type ($Lmna^{+/+}$) backcrossed to C57BL/6 background. At 4 weeks after birth, the weight of various organs of the $Lmna^{-/-}$, $Lmna^{+/-}$ and $Lmna^{+/+}$ mice was measured. A panel of biochemical analyses consisting of 15 serological tests was examined. The results showed that Lmna deficient mice had significantly decreased body weight and increased the ratio of organ to body weight in most of tissues. Compared with $Lmna^{+/+}$ and $Lmna^{+/-}$ mice, $Lmna^{-/-}$ mice exhibited lower levels of ALP (alkaline phosphatase), Chol (cholesterol), CR (creatinine), GLU (glucose), HDL (high-density lipoprotein cholesterol) and higher levels of ALT (alanine aminotransferase) (p<0.05). $Lmna^{-/-}$ mice displayed higher AST (aspartate aminotransferase) values and lower LDL (lowdensity lipoprotein cholesterol), CK-MB (creatine kinase-MB) levels than $Lmna^{+/+}$ mice (p<0.05). There were no significant differences among the three groups of mice with respect to BUN (blood urea nitrogen), CK (creatine kinase), Cyc C (cystatin C), TP (total protein), TG (triacylglycerols) and UA (uric acid) levels (p>0.05). These changes of serological parameters may provide an experimental basis for the elucidation of Lmna gene functions.

Keywords

References

  1. Andres, V. and J. M. Gonzalez. 2009. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol. 187: 945-957. https://doi.org/10.1083/jcb.200904124
  2. Arancio, W. 2012. A bioinformatics analysis of Lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome. Rejuvenation Res. 15: 123-127. https://doi.org/10.1089/rej.2011.1250
  3. Bong Hwan Choi, J. S. Lee, S. H. Lee, S. C. Kim, S. W. Kim, K. S. Kim, J. H. Lee, H. H. Seong, and T. H. Kim. 2012. Porcine LMNA is a positional candidate gene associated with growth and fat deposition. Asian-Aust. J. Anim. Sci. 25:1649-1659. https://doi.org/10.5713/ajas.2012.12288
  4. Bonne, G., M. R. Di Barletta, S. Varnous, H. M. Becane, E. H. Hammouda, L. Merlini, F. Muntoni, C. R. Greenberg, F. Gary, J. A. Urtizberea, D. Duboc, M. Fardeau, D. Toniolo, and K. Schwartz. 1999. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21:285-288. https://doi.org/10.1038/6799
  5. Cao, H. and R. A. Hegele. 2000. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9:109-112. https://doi.org/10.1093/hmg/9.1.109
  6. Cutler, D. A., T. Sullivan, B. Marcus-Samuels, C. L. Stewart, and M. L. Reitman. 2002. Characterization of adiposity and metabolism in Lmna-deficient mice. Biochem. Biophys. Res. Commun. 291:522-527. https://doi.org/10.1006/bbrc.2002.6466
  7. De Sandre-Giovannoli, A., M. Chaouch, S. Kozlov, J. M. Vallat, M. Tazir, N. Kassouri, P. Szepetowski, T. Hammadouche, A. Vandenberghe, C. L. Stewart, D. Grid, and N. Levy. 2002. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70:726-736. https://doi.org/10.1086/339274
  8. Eriksson, M., W. T. Brown, L. B. Gordon, M. W. Glynn, J. Singer, L. Scott, M. R. Erdos, C. M. Robbins, T. Y. Moses, P. Berglund, A. Dutra, E. Pak, S. Durkin, A. B. Csoka, M. Boehnke, T. W. Glover, and F. S. Collins. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293-298. https://doi.org/10.1038/nature01629
  9. Jahn, D., S. Schramm, M. Schnolzer, C. J. Heilmann, C. G. de Koster, W. Schutz, R. Benavente, and M. Alsheimer. 2012. A truncated lamin A in the Lmna (-/-) mouse line: Implications for the understanding of laminopathies. Nucleus 3:463-474. https://doi.org/10.4161/nucl.21676
  10. Kubben, N., J. W. Voncken, G. Konings, M. van Weeghel, M. M. van den Hoogenhof, M. Gijbels, A. van Erk, K. Schoonderwoerd, B. van den Bosch, V. Dahlmans, C. Calis, S. M. Houten, T. Misteli, and Y. M. Pinto. 2011. Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2:195-207. https://doi.org/10.4161/nucl.2.3.15731
  11. Mahdy Ali, K., A. Wonnerth, K. Huber, and J. Wojta. 2012. Cardiovascular disease risk reduction by raising HDL cholesterol - current therapies and future opportunities. Br. J. Pharmacol. 167:1177-1194. https://doi.org/10.1111/j.1476-5381.2012.02081.x
  12. Mazzaccara, C., G. Labruna, G. Cito, M. Scarfo, M. De Felice, L. Pastore, and L. Sacchetti. 2008. Age-related reference intervals of the main biochemical and hematological parameters in C57BL/6J, 129SV/EV and C3H/HeJ mouse strains. PLoS One 3:e3772. https://doi.org/10.1371/journal.pone.0003772
  13. Mendez-Lopez, I., and H. J. Worman. 2012. Inner nuclear membrane proteins: impact on human disease. Chromosoma. 121:153-167. https://doi.org/10.1007/s00412-012-0360-2
  14. Muchir, A., B. G. van Engelen, M. Lammens, J. M. Mislow, E. McNally, K. Schwartz, and G. Bonne. 2003. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 291:352-362. https://doi.org/10.1016/j.yexcr.2003.07.002
  15. Raffaele Di Barletta, M., E. Ricci, G. Galluzzi, P. Tonali, M. Mora, L. Morandi, A. Romorini, T. Voit, K. H. Orstavik, L. Merlini, C. Trevisan, V. Biancalana, I. Housmanowa-Petrusewicz, S. Bione, R. Ricotti, K. Schwartz, G. Bonne, and D. Toniolo. 2000. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am. J. Hum. Genet. 66:1407-1412. https://doi.org/10.1086/302869
  16. Rathkolb, B., H. A. Noyes, A. Brass, P. Dark, H. Fuchs, V. Gailus-Durner, J. Gibson, M. H. de Angelis, M. Ogugo, F. Iraqi, S. J. Kemp, J. Naessens, M. E. Pope, E. Wolf, and M. Agaba. 2009. Clinical chemistry of congenic mice with quantitative trait loci for predicted responses to Trypanosoma congolense infection. Infect. Immun. 77:3948-3957. https://doi.org/10.1128/IAI.00658-09
  17. Schnell, M. A., C. Hardy, M. Hawley, K. J. Propert, and J. M. Wilson. 2002. Effect of blood collection technique in mice on clinical pathology parameters. Hum. Gene Ther. 13:155-161. https://doi.org/10.1089/10430340152712700
  18. Sullivan, T., D. Escalante-Alcalde, H. Bhatt, M. Anver, N. Bhat, K. Nagashima, C. L. Stewart, and B. Burke. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913-920. https://doi.org/10.1083/jcb.147.5.913
  19. Wang, J. P., L. Yan, J. H. Lee, and I. H. Kim 2013. Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. Asian-Aust. J. Anim. Sci. 26:573-578. https://doi.org/10.5713/ajas.2012.12544
  20. Wolf, C. M., L. Wang, R. Alcalai, A. Pizard, P. G. Burgon, F. Ahmad, M. Sherwood, D. M. Branco, H. Wakimoto, G. I. Fishman, V. See, C. L. Stewart, D. A. Conner, C. I. Berul, C. E. Seidman, and J. G. Seidman. 2008. Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. J. Mol. Cell. Cardiol. 44:293-303. https://doi.org/10.1016/j.yjmcc.2007.11.008
  21. Worman, H. J., C. Ostlund, and Y. Wang. 2010. Diseases of the nuclear envelope. Cold Spring Harb. Perspect. Biol. 2: a000760.
  22. Yan, L., G. F. Combs, Jr., L. C. DeMars, and L. K. Johnson. 2011. Effects of the physical form of the diet on food intake, growth, and body composition changes in mice. J. Am. Assoc. Lab. Anim. Sci. 50:488-494.
  23. Zhou, X. and G. K. Hansson. 2004. Effect of sex and age on serum biochemical reference ranges in C57BL/6J mice. Comp. Med. 54:176-178.

Cited by

  1. A Drosophila model system to assess the function of human monogenic podocyte mutations that cause nephrotic syndrome vol.26, pp.4, 2014, https://doi.org/10.1093/hmg/ddw428
  2. Cellular and Animal Models of Striated Muscle Laminopathies vol.8, pp.4, 2014, https://doi.org/10.3390/cells8040291
  3. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice vol.15, pp.None, 2014, https://doi.org/10.1186/s13024-020-0357-x