DOI QR코드

DOI QR Code

Antifungal Properties of Self-actuated Photocatalyst Coated PU Foam

자기구동형 광촉매 코팅에 의한 PU발포체의 항곰팡이 특성

  • 최세영 (청주대학교 이공대학 응용화학과)
  • Received : 2014.11.05
  • Accepted : 2014.12.02
  • Published : 2014.12.31

Abstract

In this study, self-actuated photocatalyst that titanium dioxide doped by more than two transition metal was coated PU foam. The antibacterial and antifungal activity of self-actuated photocatalyst coated PU foam was characterized without light. The antibacterial property of self-actuated photocatalyst coated PU foam was shown to be reduced more than 96%, and the antifungal property was shown to be reduced more than 99.9%. The durability of self-actuated photocatalyst coated PU foam tested by Weather-O-meter showed the 7% reduction of formaldehyde decomposition from 96.5% before test to 89.8% after test. The observation of surface of PU foam coated with self-actuated photocatalyst showed that the catalyst was firmly attached to the surface of polyester fiber without separation.

본 연구에서는 이산화티타늄에 산소의 2p궤도보다 높은 에너지를 갖고 있는 2종 이상의 전이금속을 도핑시켜 빛의 유무와 관계없이 광촉매 작용을 하도록 한 자기구동형 광촉매를 PU발포체에 코팅하였다. 그리고 자기구동형 광촉매가 코팅된 PU발포체에 대하여 항균성 및 항곰팡이 특성을 알아보았다. 항균성은 자기구동형 광촉매가 코팅된 PU발포체에서 균수가 99.9%이상 저감되는 것으로 나타났으며, 항곰팡이성도 96%이상의 곰팡이포자수가 감소함을 보여 항균성 및 항곰팡이성이 우수한 것으로 확인되었다. 또한 내구성은 자기구동형 광촉매가 코팅된 PU발포체에 대하여 Weather-O-meter로 test하고 test전과 후의 포름알데히드 분해율을 확인한 결과 96.5%에서 89.8%로 약 7%p로 미약하게 감소하였으며 전자현미경으로도 관찰한 표면상태도 그대로 고르게 부착되어 있음을 확인할 수 있어 표면부착강도가 우수한 것으로 확인되었다.

Keywords

References

  1. K. M. Jung, Lucky Polym. Technol., 23, 10 (1992).
  2. D. Klempner and K. C. Frisch, Handbook of Polymeric Foams and Foam, p. 253, New York and Barcelona, 1991.
  3. O. Bayer, Rubber Chemistry and Technology, 26, 493 (1953). https://doi.org/10.5254/1.3539837
  4. G. Oretel, Polyurethane Handbook, Hauser Pub. Carl Hauser Verlag, Munich, 1985.
  5. C. H. Hong, H. S. Kim, H. H. Park, Y. H. Kim, S. B. Kim, T. W. Hwang, "Development of Antimicrobial Polyurethane Foam for Automotive Seat Modified by Urushiol", Polym. Kor., 30, 5 (2006).
  6. S. K. Kang, I. S. Cho, S. B. Kim, "Preparation and Characterization of Antimicrobial Polyurethane Foam Modified by Urushiol and Cardanol", Elast. Compos., 48, 2 (2008).
  7. G. Woods, The ICI Polyurethane Handbook, Wiley, New York, 1990.
  8. G. Oertel. Polyurethane Handbook, Hanser, New York, 1993.
  9. D. Klempner and K. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford Univ. Press, New York, 1991.
  10. T. K. Kim, "광촉매 기술의 응용제품 및 광촉매 시장 현황 ", Air Clean. Technol., 18, 2 (2005).
  11. A. Fujishima, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  12. W. Y. Choi, "Studies on $TiO_2$ photocatalytic reactions" J. Korean Ind, Eng. Chem, 14, 1011 (2003).
  13. Y. C. Park "Photocatalyst coating can be applied to the automobile interior", Textile Sci. Eng., 13, 180 (2009).
  14. S. Martin, C. L. Morrison, M. R. Hoffmann, J. Phys. Chem., 98, 13695 (1994). https://doi.org/10.1021/j100102a041
  15. L. Palmisano, V. Augugliaro, A. Sclafani, M. Schiavello, J. Phys. Chem., 92, 6710 (1988). https://doi.org/10.1021/j100334a044
  16. B. Ohtani, Phys. Chem. Chem. Phys., 16, 1788 (2014). https://doi.org/10.1039/c3cp53653j
  17. J. E. Mcmurry, R. C. Fay, Chemistry 5th edition, Pearson, Prentice Hall, 2008.
  18. J. K. Kim, "Preparation and Characterization of Transition Metal-doped $TiO_2$ Photocatalysts by Sol-Gel Process", Inha Univ., 2004.
  19. J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, J. Mol. Catal. A, 216, 35 (2004). https://doi.org/10.1016/j.molcata.2004.01.008
  20. JIS-Z-2801, Antibacteial products-Test for antibacterial activity and efficacy, 2000.
  21. ASTM-G-21, Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi, 2009.