DOI QR코드

DOI QR Code

Fabrication of (PDDA/SiO2) Thin Film by an Applying Voltage Layer-By-Layer Self Assembly Method

전압인가 LBL법을 이용한 (PDDA/SiO2) 박막 제조

  • Park, Jong-Guk (Optic & Display Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kyung, Kyu-Hong (Graduate School Science & Technology, Keio University) ;
  • Lee, Mi-Jai (Optic & Display Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Jonghee (Optic & Display Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Tae-Young (Optic & Display Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Optic & Display Materials Team, Korea Institute of Ceramic Engineering and Technology)
  • 박종국 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 경규홍 (게이오대학교 과학기술대학원) ;
  • 이미재 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 김진호 (한국세라믹기술원 광.디스플레이소재팀)
  • Received : 2014.11.27
  • Accepted : 2014.12.02
  • Published : 2014.12.27

Abstract

(PDDA/$SiO_2$) thin films that consisted of positively charged poly (diallyldimethylammonium chloride) (PDDA) and negatively charged $SiO_2$ nanoparticles were fabricated on a glass substrate by an applying voltage layer-by-layer (LBL) self-assembly method. In this study, the microstructure and optical properties of the (PDDA/$SiO_2$) thin films coated on glass substrate were measured as a function of the applied voltage on the Pt electrodes. When 1.0 V was applied to a Pt electrode in a PDDA and $SiO_2$ solution, the thickness of the $(PDDA/SiO_2)_{10}$ thin film increased from 79 nm to 166 nm. The surface roughness also increased from 15.21 nm to 33.25 nm because the adsorption volume of the oppositely charged PDDA and $SiO_2$ solution increased. Especially, when the voltage was applied to the Pt electrode in the $SiO_2$ solution, the thickness increase of the (PDDA/$SiO_2$) thin film was larger than that obtained when using the PDDA solution. The refractive index of the fabricated (PDDA/$SiO_2$) thin film was ca. n = 1.31~1.32. The transmittance of the glass substrate coated by (PDDA/$SiO_2$)6 thin film with a thickness of 106 nm increased from ca. 91.37 to 95.74% in the visible range.

Keywords

References

  1. P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis and G. Kordas, Thin Solid Films, 323, 188 (1998). https://doi.org/10.1016/S0040-6090(97)01018-3
  2. M. Takeuchi, T. Itoh and H. Nagasaka, Thin Solids Films, 51, 83 (1978). https://doi.org/10.1016/0040-6090(78)90215-8
  3. K. S. Yeung and Y. W. Lam, Thin Solids Films, 109, 169 (1983). https://doi.org/10.1016/0040-6090(83)90136-0
  4. J. H. Kim and S. Shiratori, Jpn. J. Appl. Phys., 44, 7588 (2005). https://doi.org/10.1143/JJAP.44.7588
  5. Y. Tsuge, J. H. Kim, Y. Sone, O. Kuwaki and S. Shiratori, Thin Solid Films, 516, 2463 (2008). https://doi.org/10.1016/j.tsf.2007.04.084
  6. H. J. Kim, K .J. Jeong and D. S. Bae, Korean. J. Mater. Res., 22(5), 249 (2012). https://doi.org/10.3740/MRSK.2012.22.5.249
  7. G. Decher, J. D. Hong and J. Schmitt, Thin Soild Films, 831, 210/211 (1992). https://doi.org/10.1016/0040-6090(92)90417-A
  8. J. Sczybowski, G. Brauer, G. Teschner and A. Zmelty, Surf. Coat. Technol., 98, 1460 (1998). https://doi.org/10.1016/S0257-8972(97)00151-5
  9. A. Yen, H. I. Smith, M. L. Schattenbyrg and G. N. Taylor, J. Electrochem. Soc., 139, 616 (1992). https://doi.org/10.1149/1.2069266
  10. C. L. Luyer, L. Lou, C. Bovier, J. C. Plenet, J. G. Dumas and J. Mugnier, Opt. Mater., 18, 221 (2001).
  11. H. Hattori, Adv. Mater., 13, 51 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<51::AID-ADMA51>3.0.CO;2-F
  12. B. H. Sohn, T. H. Kim, K. H. Char, Langmuir, 18, 7770 (2002). https://doi.org/10.1021/la025957p
  13. R. A. Caruso, A. Susha, F. Caruso, Chem. Mater., 13, 400 (2001). https://doi.org/10.1021/cm001175a
  14. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  15. E. Stathatos, P. Lianos, J. Phys. Chem., B 105, 3468 (2001).
  16. E. R. Kleinfeld, G. S. Ferguson, Chem. Mater., 8, 1575 (1996). https://doi.org/10.1021/cm960073a
  17. K. H. Kyung and S. Shiratori, Jap. J. Appl. Phys., 50, 025602 (2011). https://doi.org/10.7567/JJAP.50.025602
  18. M. Matsuda and S. Shiratori, Langmuir, 27, 4271 (2011). https://doi.org/10.1021/la200340v
  19. Y. Wang, X. J. Wang, Y. Gao, Z. C. Cui, Q. Lin, W. Z. Yu, L. Y. Liu, L. Xu, D. M. Zhang and B. Yang, Langmuir, 20, 8952 (2004). https://doi.org/10.1021/la047871x
  20. A. P. Ngankam and P. R. Van Tassel, Langmuir, 21, 5865 (2005). https://doi.org/10.1021/la050066d
  21. F. H. Wu, Z. C. Hu, L. W. Wang, J. J. Xu, Y. Z. Xian, Y. Tian and L. T. Jin, Electrochem. Commun., 10, 630 (2008). https://doi.org/10.1016/j.elecom.2008.01.020
  22. P. Zhang, J. W. Qian, Y. Yang, Q. F. An, X. Q. Liu and Z. L. Gui, J. Membr. Sci., 320, 73 (2008). https://doi.org/10.1016/j.memsci.2008.03.055
  23. Y. H. Ko, Y. H. Kim, J. H. Park, P. J. Yoo and K. T. Nam, Macromolecules, 44, 2866 (2011). https://doi.org/10.1021/ma102112a