DOI QR코드

DOI QR Code

실리콘 웨이퍼를 이용한 이방성의 젖음성을 가지는 초소유성 표면 제작

Fabrication of Superoleophobic Surface with Anisotropic Wettability Using Silicon Wafer

  • Lee, Dong-Ki (Graduate School of NID Fusion Technology, Seoul National University of Science & Technology) ;
  • Lee, Eun-Haeng (Department of Mechanical System Design Engineering, Seoul National University of Science & Technology) ;
  • Cho, Younghak (Department of Mechanical System Design Engineering, Seoul National University of Science & Technology)
  • 투고 : 2014.07.25
  • 심사 : 2014.10.21
  • 발행 : 2014.12.15

초록

We fabricated grooved mushroom structures with anisotropic wettability on silicon substrates using basic MEMS processes. The geometry of these grooved mushroom structures could be changed by controlling the additional IPA solution during Si etching by TMAH solution. To understand anisotropic wettability, contact angles (CAs) of hexadecane droplets were measured in the orthogonal and parallel directions to grooved lines. The CA measurement results displayed anisotropic wetting on the grooved mushroom structures. However, specimens with $80{\mu}m$ distance between top layers displayed isotropic and superoleophobic wetting. This study demonstrates that the thickness of the top layer is more critical than the width or height of the ridge when determining the wettability of organic solvent. Despite the wide distance between top layers ($80{\mu}m$), the specimen with a thin top layer (100 nm) showed highly anisotropic wetting and low CA due to the pinning of droplets at the edge of the top layer.

키워드

참고문헌

  1. Dufour, R., Perry, G., Harnois, M., Coffinier, Y., Thomy, V., Senez, V., Boukherroub, R., 2013, From micro to nano reentrant structures: hysteresis on superomniphobic surfaces, Colloid Polym Sci. 291 409-415. https://doi.org/10.1007/s00396-012-2750-7
  2. Dufour, R., Harnois, M., Coffinier, Y., Thomy, V., Boukherroub, R., Senez, V., 2010, Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate, Langmuir 26:22 17242-17247. https://doi.org/10.1021/la103462z
  3. Kim, J., Lin, P. Y., Kim, W. S., 2012, Mechanically robust super-oleophobic stamp for direct stamping of silver nanoperticle ink, Thin Solid Films 520 4339-4343. https://doi.org/10.1016/j.tsf.2012.02.070
  4. Ahuja, A., Taylor, A., Lifton, V., Sidorenko, A. A., Salamon, T. R., Lobaton, E. J., Kolodner, P., Krupenkin, T. N., 2008, Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces, Langmuir 24 9-14. https://doi.org/10.1021/la702327z
  5. Tuteja, A., Choi, W., Ma, M., Marby, J.M., Mazzella, S. A., Rutledge, G. C., McKinley, G. H., Cohen, R. E., 2007, Designing Superoleophobic Surfaces, Science 318 1618-1622. https://doi.org/10.1126/science.1148326
  6. Tuteja, A., Choi, W., McKinley, G. H., Cohen, R. E., Rubner M. F., 2008, Design Parameters for Superhydrophobicity and Superoleophobicity, MRS Bulletin 33 752-758. https://doi.org/10.1557/mrs2008.161
  7. Wong, T. -S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A., Aizenberg, J., 2011, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477 433-447.
  8. Nosonovsky, M., 2011, Materials science: Slippery when wetted, Nature 477 412-413. https://doi.org/10.1038/477412a
  9. Cegniz, U., Avci, M. Z., Erbil, H. Y., Sarac, A. S., 2012, A superoleophobic textile repellent towards impacting drops of alkanes, Applied Surface Science 258 3835-3840. https://doi.org/10.1016/j.apsusc.2011.12.041
  10. Hsieh, C. -T., Cheng, Y. -S., Hsu, S. -M., Lin, J. -Y., 2010, Water and oil repellency of flexible silica-coated polymeric substrates, Applied Surface Science 256 4867-4872. https://doi.org/10.1016/j.apsusc.2010.01.081
  11. Wu, T., Suzuki, Y., 2011, Engineering superlyophobic surfaces as the microfluidic platform for droplet manipulation, Lab chip 11 3121-3129. https://doi.org/10.1039/c0lc00513d
  12. Wu, T., Suzuki, Y., 2011, Design, microfabrication and evaluation of robust high-performance superlyophobic surfaces, Sensors and Actuators B 156 401-409. https://doi.org/10.1016/j.snb.2011.04.065
  13. Kang, S. M, Kim, S. M, Kim, H. N., Kwak, M. K., Tahk, D. H., Suh, K. Y., 2012, Robust superomniphobic surfaces with mushroom-like micropillar arrays, Soft Matter. 8 8563-8568. https://doi.org/10.1039/c2sm25879j
  14. Kim, S., Cheung, E., Sitti, M., 2009, Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives, Langmuir 25 7196-7199. https://doi.org/10.1021/la900732h
  15. Lee, D. -K., Cho, Y. H., 2013, Effects of Grooced Surface with Nano-ridges on Silicon Substrate on Anisotropic Wettability, Journal of the Korean Society of Manufacturing Technology Engineers 22:3-1 544-550. https://doi.org/10.7735/ksmte.2013.22.3.544
  16. Zhao, H., Law, K. Y., 2012, Directional Self-Cleaning Superoleophobic Surface. Langmuir 28 11812-11818. https://doi.org/10.1021/la301894e

피인용 문헌

  1. A superoleophobic surface with anisotropic flow of hexadecane droplets vol.23, pp.2, 2014, https://doi.org/10.1007/s00542-016-2945-9
  2. Fabrication of Anisotropically Oleophobic Surface with Inverse-Tapered Structure Using Micromolding in Capillaries and Microtransfer Molding vol.36, pp.4, 2014, https://doi.org/10.7736/kspe.2019.36.4.413