DOI QR코드

DOI QR Code

Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD

탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구

  • Seo, Jin-Won (Icheon Branch, Korea Institute of Ceramic Eng. & Tech) ;
  • Kim, Jun-Woo (Icheon Branch, Korea Institute of Ceramic Eng. & Tech) ;
  • Hahn, Yoon-Soo (Icheon Branch, Korea Institute of Ceramic Eng. & Tech) ;
  • Choi, Kyoon (Icheon Branch, Korea Institute of Ceramic Eng. & Tech) ;
  • Lee, Jong-Heun (Dept. of Material Sci. & Eng., Korea University)
  • 서진원 (한국세라믹기술원 이천분원) ;
  • 김준우 (한국세라믹기술원 이천분원) ;
  • 한윤수 (한국세라믹기술원 이천분원) ;
  • 최균 (한국세라믹기술원 이천분원) ;
  • 이종흔 (고려대학교 재료공학과)
  • Received : 2014.10.28
  • Accepted : 2014.12.05
  • Published : 2014.12.31

Abstract

In order to increase the thickness uniformity in chemical vapor depositon of silicon carbide, we have carried out CFD studies for a CVD apparatus having a horizontally-rotated 3-stage susceptor. We deposited silicon carbide films of 3C-SiC phase showing quite uniform thickness between stages but not uniform one in the stage. The cause of this nonuniformity is thought to be originated from the high rotational speed. And the uniformity between stages can be further increased with the $120^{\circ}$ split type nozzles from CFD results. Through the formation of silicon carbide film on graphite substrates we can make oxidation-resistant and dust-free graphite components with high hardness for the semiconductor applications.

탄화규소의 화학기상증착 중에 두께 균일성을 향상시키기 위하여 평행하게 회전하는 3단 서셉터를 포함하는 CVD 장치에 대하여 전산유체역학(CFD) 시뮬레이션을 수행하였다. 실제 증착 실험에서는 단 간의 두께 균일성은 상당히 만족스러웠으나 같은 단 위에서는 위치에 따라 두께가 균일하지 못한 3C-SiC 상이 얻어지는 것을 확인하였다. 불균일의 원인으로는 서셉터의 회전 속도에 따른 영향으로 판단되었다. CFD 결과로부터 단 간의 균일성을 향상시키기 위해서는 120도 분기 노즐을 주입구에 설치하는 것이 바람직할 것으로 판단되었으며 단 내의 균일도 향상은 회전 속도를 줄임으로써 가능할 것으로 생각된다. 이렇게 제작된 탄화규소가 증착된 흑연 부품은 고경도, 내산화성 및 분진 억제 특성을 갖고 있어서 반도체용 부품으로 사용될 수 있다.

Keywords

References

  1. K.-S. Cho, S.-H. Yoon, H. Chung, S.-H. Chae, K.-Y. Lim, Y.-W. Kim and S.-H. Park, "SiC materials techniques for semiconductor production line", Ceramist 10 (2007) 33.
  2. Y.-H. Yun and S.C.Choi, "Fabrication of SiC convered graphite by chemical vapor reaction method (II)", J. Kor. Ceram. Soc. 36 (1999) 21.
  3. G. Chichignoud, M. Ucar-Morais, M. Pons and E. Blanquet, "Chlorinated silicon carbide CVD revisited for polycrystalline bulk growth", Surf. Coat. Technol. 201 (2007) 8888. https://doi.org/10.1016/j.surfcoat.2007.04.113
  4. J.-H. Lee, J.-B. Yoo and S.-I. Bae, "Susceptor design by numerical analysis in horizontal CVD reactor", J. Korean Cryst. Growth Cryst. Technol. 15 (2005) 135.
  5. H.-Y. Shin, S.-M. Hogn, J.-W. Yoon, D.-Y. Jeong and J.-I. Im, "Numerical analysis of CZ growth process for sapphire crystal of 300 mm length", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 272. https://doi.org/10.6111/JKCGCT.2013.23.6.272
  6. J.-H. Kim, Y.-H. Park and Y.-C. Lee, "Analysis of melt flows and remelting phenomena through numerical simulations during the kyropoulos sapphire single crystal growth", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 129. https://doi.org/10.6111/JKCGCT.2013.23.3.129
  7. Y. Yan and Z. Weigang, "Kinetic and microstructure of SiC deposited from $SiCl_4-CH_4-H_2$", Chin. J. Chem. Eng. 17 (2009) 419. https://doi.org/10.1016/S1004-9541(08)60226-8
  8. J.-W. Kim, Y.-S. Han, K. Choi and J.-H. Lee, "Application of CFD simulation in SiC-CVD process", J. Comput. Fluids Eng. 18 (2013) 67. https://doi.org/10.6112/kscfe.2013.18.3.067
  9. R.B. Bird, W.E. Stewart and E.N. Lightfoot, "Transport Phenomena", 2nd ed. (John Wiley & Sons, 2007).
  10. J.-W. Seo and K. Choi, "Application of computational fluid dynamic simulation to SiC CVD reactor for mass production", J. Kor. Ceram. Soc. 50 (2013) 533. https://doi.org/10.4191/kcers.2013.50.6.533

Cited by

  1. Characterization of crack self-healing of silicon carbide by hot press sintering vol.26, pp.2, 2016, https://doi.org/10.6111/JKCGCT.2016.26.2.062