DOI QR코드

DOI QR Code

Evaluation of Mechanical Property Variation of Epoxy Based Compliant Polymer Concretes Exposed to UV Light

에폭시 기반 연성 폴리머 콘크리트의 자외선 노출에 의한 기계적 물성평가

  • Received : 2014.10.10
  • Accepted : 2014.12.04
  • Published : 2014.12.31

Abstract

This paper aims to evaluate material property variation of polymer concretes under ultra-violet exposure condition. The components and mixing ratio of the polymer composite specimens were determined by the previous research results. The equivalent UV exposure time was calculated with the consideration of the power of metal halide lamp and maximum 3 years were selected for the experiments. From the tests, it was found that the generated heat during UV exposure affected much the material properties of polymer concrete by means of post cure. As a result, the compressive strength increased and ductility factor decreased.

본 연구에서는 공항 포장용 유지보수 재료로 사용되는 폴리머 콘크리트의 자외선 노출에 대한 기계적 물성 변화를 확인하기 위해 자외선 노출 전/후 시편의 압축강도 및 연성인자의 변화를 평가하였다. 현재 공항 포장용으로 사용되는 폴리머 콘크리트의 비율과 선행연구를 통해 얻은 최적 배합비율을 참고하여 시편을 제작하였다. 자외선 발생 램프의 출력을 고려하여 자연상태에서 노출되는 등가시간을 계산한 후 최대 3년에 해당하는 시간만큼의 등가시간 동안 시편을 노출시켰다. 실험결과, 자외선 노출 자체는 재료물성에 거의 영향을 주지 않았으며, 자외선 노출에 따른 온도상승에 의한 재료물성 변화가 주로 관찰되었다. 자외선에 의해 발생된 열에 노출된 후 모든 시편에서 인성은 감소하고, 압축강도는 증가하는 경향을 나타내었다.

Keywords

References

  1. Ignacio, C., Ferraz, V., and Orefice, R.L., "Study of the Behavior of Polyester Concretes Containing Ionomers as curing Agents," Journal of Applied Polymer Science, Vol. 108 No. 4, 2008, pp. 2682-2690. https://doi.org/10.1002/app.27629
  2. Lee, C.H., Park, J.E., Choi, J.H., Kweon, J.H., Che, W.S., and Kim, S.H., "A Study on the Manufacture of Polymer Concrete Using the Waste Paint," Journal of the Korean Society for Composite Materials, Vol. 147, No. 2, 2004, pp. 21-27.
  3. Jung, K.C., Roh, I.T., and Chang, S.H., "Stress Analysis of Runway Repaired Using Compliant Polymer Concretes with Consideration of Cure Shrinkage," Composite Structures, Vol. 119, 2015, pp. 13-23. https://doi.org/10.1016/j.compstruct.2014.08.026
  4. Jung, K.C., Roh, I.T., and Chang, S.H., "Thermal Behavior and Performance Evaluation of Epoxy-based Polymer Concretes Containing Silicone Rubber for Use as Runway Repair Materials," Composite Structures, Vol. 119, 2015, pp. 195-205. https://doi.org/10.1016/j.compstruct.2014.08.038
  5. Novoa, P.J.R.O., Ribeiro, M.C.S., Ferreira, A.J.M., and Marques, A.T., "Mechanical Characterization of Lightweight Polymer Mortar Modified with Cork Granulates," Composites science and Technology, Vol. 64, No. 13, 2004, pp. 2197-2205. https://doi.org/10.1016/j.compscitech.2004.03.006
  6. Gopal, R., "Polymer Concrete Composites for Enhancement of Mobility of Troops in Desert Operations," Materials Science and Engineering: B, Vol. 132, No. 1, 2006, pp. 129-133. https://doi.org/10.1016/j.mseb.2006.04.001
  7. Rosu, D., Rosu, L., Mustata, F., and Varganici, C.D., "Effect of UV Radiation on Some Semi-interpenetrating Polymer Networks Based on Polyurethane and Epoxy Resin," Polymer Degradation and Stability, Vol. 97, No. 8, 2012, pp. 1261-1269. https://doi.org/10.1016/j.polymdegradstab.2012.05.035
  8. Jung, K.C., Roh, I.T., and Chang, S.H., "Evaluation of Mechanical Properties of Polymer Concretes for the Rapid Repair of Runways," Composites Part B: Engineering, Vol. 58, 2014, pp. 352-360. https://doi.org/10.1016/j.compositesb.2013.10.076
  9. ASTM C 192, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.
  10. ASTM C 579-01, Standard Test Methods for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes.
  11. Lokuge, W., and Aravinthan, T., "Effect of Fly Ash on the Behaviour of Polymer Concrete with Different Types of Resin," Materials & Design, Vol. 51, 2013, pp. 175-181. https://doi.org/10.1016/j.matdes.2013.03.078
  12. McGreer, M., Atlas Weathering Testing Guidebook, Chicago: Atlas Material Testing Technology LLC, 2001.
  13. KS F 2274, Recommended Practice for Accelerated Artificial Exposure of Plastics Building Materials.
  14. ASTM G 151, Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources.
  15. Woo, R.S., Zhu, H., Leung, C.K., and Kim, J.K., "Environmental Degradation of Epoxy-organoclay Nanocomposites due to UV Exposure: Part II Residual Mechanical Properties," Composites Science and Technology, Vol. 68, No. 9, 2008, pp. 2149-2155. https://doi.org/10.1016/j.compscitech.2008.03.020
  16. Kumar, B.G., Singh, R.P., and Nakamura, T., "Degradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet Radiation and Condensation," Journal of Composite Materials, Vol. 36, No. 24, 2002, pp. 2713-2733. https://doi.org/10.1177/002199802761675511
  17. Kim, J.H., and Suh, Y.C., "Laboratory Evaluation of Polysulfide Epoxy Overlay Material for Bridge Deck," Korean Society of Road Engineering, Vol. 13, No. 2, 2011, pp. 159-166. https://doi.org/10.7855/IJHE.2011.13.2.159
  18. Cho, H.K., Lee, B.Y., Lee, J.S., and Park, S.W., "A Seasonal Climatology of Erythemal Ultraviolet Irradiance over Korea," Asia-Pacific Journal of Atmospheric Sciences, Vol. 37, No. 5, 2001, pp. 525-539.