DOI QR코드

DOI QR Code

A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness

유연 복합재료 전극 제조 및 표면조도에 따른 접착 특성에 대한 연구

  • Received : 2014.12.18
  • Accepted : 2014.12.24
  • Published : 2014.12.31

Abstract

The fabrication of flexible electrodes coated on the surface of a dielectric elastomer film, which is a type of electroactive polymer (EAP), was carried out. Controlled amounts of Xylitol powder were added (10, 30, 50 and 70 wt%) to the commercial conductive polymer (PEDOT:PSS) to enhance resilience of the electrode. To check resilience of the fabricated composite electrodes, tensile tests were carried out using silicone films coated with the polymer electrodes. From the test results, it was found that 70 wt% Xylitol containing conductive polymer had excellent elongation and high failure strains. Furthermore, surface of the silicone film was uniformly polished with various abrading papers to enhance the wettability of the conductive polymers on the surface of the silicone film. It was found that the silicone film polished with #120 abrading paper had the best wettability and guaranteed excellent bonding behavior.

전기활성고분자의 종류 중 하나인 유전성 탄성체의 거동에 대응할 수 있는 유연전극 제조에 대한 연구를 수행하였다. 전도성 고분자(PEDOT:PSS)에 가소제 역할을 하는 자이리톨(Xylitol)을 첨가하여 기계적 특성을 평가하였다. 자이리톨을 첨가한 전극의 유연성을 확인하기 위해 실리콘 시편에 전극을 도포하여 인장시험을 수행하였다. 자이리톨을 70 wt% 첨가한 조건에서 연신률이 크게 증가함을 확인하였고 실리콘 거동에 큰 영향을 미치지 않는 것을 확인하였다. 또한, 전극과 실리콘의 접착성을 향상시키기 위해 표면조도가 다른 실리콘 필름을 제작하였으며 사포 #120으로 처리한 시편에서 실리콘 필름과 전극의 접착성이 향상됨을 확인하였다.

Keywords

References

  1. Yoseph, B.C., "Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential, and Challenges," SPIE Press, WA, USA, 2004.
  2. Bddiss, E., and Chau, T., "Electroactive Polymeric Sensors in Hand Prostheses: Bending Response of an Ionic Polymer Metal Composite," Medical engineering and physics, Vol. 28, No. 6, 2006, pp. 568-578. https://doi.org/10.1016/j.medengphy.2005.09.009
  3. Ren, K., Liu, Y., Hofmann, H., Zhang, Q.M., and Blottman, J., "An Active Energy Harvesting Scheme with an Electroactive Polymer," Applied Physics Letters, Vol. 91, No. 1, 2007.
  4. Suo, Z.G., "Theory of Dielectric Elastomers," Acta Mech Solida Sin, Vol. 23, No. 6, 2010, pp. 549-78. https://doi.org/10.1016/S0894-9166(11)60004-9
  5. Carpi, F., Chiarelli, P., Mazzoldi, A., and De Rossi D., "Electromechanical Characterisation of Dielectric Elastomer Planar Actuators: Comparative Evaluation of Different Electrode Materials and Different Counterloads," Sensor Actuat a-Phys, Vol. 107, No. 1, 2003, pp. 85-95. https://doi.org/10.1016/S0924-4247(03)00257-7
  6. Ron, P., Roy, K., Qibing, P., and Jose, J., "High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%," Science Magazine, Vol. 287, No. 5454, 2000, pp. 836-839.
  7. Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q., and Chiba, S., "High-field Deformation of Elastomeric Dielectrics for Actuators," Materials Science and Engineering: C, Vol. 11, No. 2, 2000, pp. 89-100. https://doi.org/10.1016/S0928-4931(00)00128-4
  8. Kofod, G., Sommer-Larsen P., Kornbluh, R., and Pelrine, R., "Actuation Response of Polyacrylate Dielectric Elastomers," Journal of Intelligent Material Systems and Structures, Vol. 14, No. 12, 2003, pp. 787-93. https://doi.org/10.1177/104538903039260
  9. Silvain, M., Xuequn, Q.Z., Michael, W., Christiane, L., and Gabor, K., "A Comparison between Silicone and Acrylic Elastomers as Dielectric Materials in Electroactive Polymer Actuators," Polymer International, Vol. 59, No. 3, 2010, pp. 391-399.
  10. Carpi, F., and De Rossi, D., "Improvement of Electromechanical Actuating Performances of a Silicone Dielectric Elastomer by Dispersion of Titanium Dioxide Powder," IEEE T Dielect El In, Vol. 12, No. 4, 2005, pp. 835-843. https://doi.org/10.1109/TDEI.2005.1511110
  11. Schindler, A., Brill, J., Fruehauf, N., Novak, J.P., and Yaniv, Z., "Solution-deposited Carbon Nanotube Layers for Flexible Display Applications," Physica E-Low-Dimensional Systems & Nanostructures, Vol. 37, No. 1-2, 2007, pp. 119-123. https://doi.org/10.1016/j.physe.2006.07.016
  12. Crispin, X., Jakobsson, F.L.E., Crispin, A., Grim, P.C.M., Andersson, P., Volodin, A., Van Haesendonck, C., Van der Auweraer, M., Salaneck, W.R., and Berggren, M., "The Origin of the High Conductivity of Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) (Pedot-Pss) Plastic Electrodes," Chemistry of Materials, Vol. 18, No. 18, 2006, pp. 4354-4360. https://doi.org/10.1021/cm061032+
  13. Ma, K., Rivera, J., Hirasaki, G.J., and Biswal, S.L., "Wettability Control and Patterning of PDMS Using UV-ozone and Water Immersion," Journal of Colloid and Interface Science, Vol. 363, 2011, pp.371-378. https://doi.org/10.1016/j.jcis.2011.07.036
  14. Kubiak, K.J., Wilsona, M.C.T., Mathiab, T.G., and Carvalc, Ph., "Wettability Versus Roughness of Engineering Surfaces," Wear, Vol. 271, No. 3-4, 2011, pp. 523-528. https://doi.org/10.1016/j.wear.2010.03.029
  15. Zhang, X., Wissler, M., Jaehne, B., Breonnimann, R., and Kovacs, G., "Effects of Crosslinking, Prestrain, and Dielectric Filler on the Electromechanical Response of a New Silicone and Comparison with Acrylic Elastomer," Proceeding of Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), Jul. 2004, pp. 78-86.
  16. Material Safety Data Sheet, EL-P 3145, Agfa.
  17. Li, Y., Masuda, Y., Iriyama, Y., and Okuzaki, H., "Stretchable and Highly Conductive Polymer Films," Transactions of the Materials Research Society of Japan, Vol. 37, No. 2, 2012, pp. 303-306. https://doi.org/10.14723/tmrsj.37.303

Cited by

  1. 탄소분말이 함유된 마이크로 그리드패턴 전기용량형 압력센서 vol.32, pp.5, 2014, https://doi.org/10.7234/composres.2019.32.5.237