DOI QR코드

DOI QR Code

A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure

  • Jun, Sang-Ho (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Korea University Anam Hospital) ;
  • Ahn, Jin-Soo (Department of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jae-Il (Department of Dentistry & Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Ahn, Kyo-Jin (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Yun, Pil-Young (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Kim, Young-Kyun (Department of Dentistry & Dental Research Institute, School of Dentistry, Seoul National University)
  • 투고 : 2014.05.07
  • 심사 : 2014.08.18
  • 발행 : 2014.12.31

초록

PURPOSE. The purpose of this prospective study was to evaluate the effectiveness of newly developed autogenous tooth bone graft material (AutoBT)application for sinus bone graft procedure. MATERIALS AND METHODS. The patients with less than 5.0 mm of residual bone height in maxillary posterior area were enrolled. For the sinus bone graft procedure, Bio-Oss was grafted in control group and AutoBT powder was grafted in experimental group. Clinical and radiographic examination were done for the comparison of grafted materials in sinus cavity between groups. At 4 months after sinus bone graft procedure, biopsy specimens were analyzed by microcomputed tomography and histomorphometric examination for the evaluation of healing state of bone graft site. RESULTS. In CT evaluation, there was no difference in bone density, bone height and sinus membrane thickness between groups. In microCT analysis, there was no difference in total bone volume, new bone volume, bone mineral density of new bone between groups. There was significant difference trabecular thickness ($0.07{\mu}m$ in Bio-Oss group Vs. $0.08{\mu}m$ in AutoBT group) (P=.006). In histomorphometric analysis, there was no difference in new bone formation, residual graft material, bone marrow space between groups. There was significant difference osteoid thickness ($8.35{\mu}m$ in Bio-Oss group Vs. $13.12{\mu}m$ in AutoBT group) (P=.025). CONCLUSION. AutoBT could be considered a viable alternative to the autogenous bone or other bone graft materials in sinus bone graft procedure.

키워드

참고문헌

  1. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 1997;8:117-24. https://doi.org/10.1034/j.1600-0501.1997.080206.x
  2. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999;14:835-40.
  3. Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res 2003;14:137-43. https://doi.org/10.1034/j.1600-0501.2003.140201.x
  4. Caubet J, Petzold C, Saez-Torres C, Morey M, Iriarte JI, Sanchez J, Torres JJ, Ramis JM, Monjo M. Sinus graft with safescraper: 5-year results. J Oral Maxillofac Surg 2011;69:482-90. https://doi.org/10.1016/j.joms.2010.10.037
  5. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, Kim SY. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:496-503. https://doi.org/10.1016/j.tripleo.2009.10.017
  6. Kim YK, Kim SG, Oh JS, Jin SC, Son JS, Kim SY, Lim SY. Analysis of the inorganic component of autogenous tooth bone graft material. J Nanosci Nanotechnol 2011;11:7442-5. https://doi.org/10.1166/jnn.2011.4857
  7. Kim YK, Lee JK, Kim KW, Um IW, Murata M. Healing Mechanism and Clinical Application of Autogenous Tooth Bone Graft Material. In: Pignatello R, ed. Advances in Biomaterials Science and Biomedical Applications [Internet]. Rijeka, Croatia; InTech; 2013;405-35.
  8. Kim YK, Yi YJ. Horizontal ridge augmentation using ridge expansion and autogenous tooth bone graft: a case report. J Dent Rehabil Appl Sci 2011;27:109-15.
  9. Kim YK, Kim SG, Um IW. Vertical and horizontal ridge augmentation using autogenous tooth bone graft materials: case report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:166-70.
  10. Kim YK, Kim SG, Kim KW, Um IW. Extraction socket preservation and reconstruction using autogenous tooth bone graft: Case report. J Korean Assoc Maxillofac Plast Reconstr Surg 2011;33:264-9.
  11. Kim YK, Choi YH. Tooth autotransplantation with autogenous tooth- bone graft: a case report. J Korean Dent Sci 2011;4:79-84. https://doi.org/10.5856/JKDS.2011.4.2.79
  12. Lee JY, Kim YK, Kim SG, Lim SC. Histomorphometric study of sinus bone graft using various graft material. J Dent Rehab App Sci 2011;27:141-7.
  13. Kim YK, Lee HJ, Kim KW, Kim SG, Um IW. Guide bone regeneration using autogenous teeth: case reports. J Korean Assoc Oral Maxillofac Surg 2011;37:142-7. https://doi.org/10.5125/jkaoms.2011.37.2.142
  14. Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent 2011;20:471-5. https://doi.org/10.1097/ID.0b013e3182386d74
  15. Lee JY, Kim YK. Retrospective cohort study of autogenous tooth bone graft. Oral Biol Res 2012;36:39-43.
  16. Kim YK, Um IW, Murata M. Tooth bank system for bone regeneration-Safety report- J Hard Tissue Biol 2014;23:371-6. https://doi.org/10.2485/jhtb.23.371
  17. Jensen OT. The sinus bone graft. 2nd ed. Chicago: Quintessence Publ; 2006. p. 103-25.
  18. Kim YK, Kim SG, Park JY, Yi YJ, Bae JH. Comparison of clinical outcomes of sinus bone graft with simultaneous implant placement: 4-month and 6-month final prosthetic loading. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:164-9. https://doi.org/10.1016/j.tripleo.2010.04.011
  19. Janner SF, Caversaccio MD, Dubach P, Sendi P, Buser D, Bornstein MM. Characteristics and dimensions of the Schneiderian membrane: a radiographic analysis using cone beam computed tomography in patients referred for dental implant surgery in the posterior maxilla. Clin Oral Implants Res 2011;22:1446-53. https://doi.org/10.1111/j.1600-0501.2010.02140.x
  20. Phothikhun S, Suphanantachat S, Chuenchompoonut V, Nisapakultorn K. Cone-beam computed tomographic evidence of the association between periodontal bone loss and mucosal thickening of the maxillary sinus. J Periodontol 2012;83:557-64. https://doi.org/10.1902/jop.2011.110376
  21. Tajima N, Ohba S, Sawase T, Asahina I. Evaluation of sinus floor augmentation with simultaneous implant placement using platelet-rich fibrin as sole grafting material. Int J Oral Maxillofac Implants 2013;28:77-83. https://doi.org/10.11607/jomi.2613
  22. Nevins M, Kirker-Head C, Nevins M, Wozney JA, Palmer R, Graham D. Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int J Periodontics Restorative Dent 1996;16:8-19.
  23. Kuhl S, Gotz H, Brochhausen C, Jakse N, Filippi A, d'Hoedt B, Kreisler M. The influence of substitute materials on bone density after maxillary sinus augmentation: a microcomputed tomography study. Int J Oral Maxillofac Implants 2012;27:1541-6.
  24. Huang HL, Chen MY, Hsu JT, Li YF, Chang CH, Chen KT. Three-dimensional bone structure and bone mineral density evaluations of autogenous bone graft after sinus augmentation: a microcomputed tomography analysis. Clin Oral Implants Res 2012;23:1098-103. https://doi.org/10.1111/j.1600-0501.2011.02273.x
  25. Lundgren S, Moy P, Johansson C, Nilsson H. Augmentation of the maxillary sinus floor with particulated mandible: a histologic and histomorphometric study. Int J Oral Maxillofac Implants 1996;11:760-6.
  26. Chackartchi T, Iezzi G, Goldstein M, Klinger A, Soskolne A, Piattelli A, Shapira L. Sinus floor augmentation using large (1-2 mm) or small (0.25-1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clin Oral Implants Res 2011;22:473-80. https://doi.org/10.1111/j.1600-0501.2010.02032.x
  27. Kim DM, Nevins ML, Camelo M, Camelo JM, Schupbach P, Hanratty JJ, Uzel NG, Nevins M. The efficacy of demineralized bone matrix and cancellous bone chips for maxillary sinus augmentation. Int J Periodontics Restorative Dent 2009;29:415-23.
  28. Gapski R, Neiva R, Oh TJ, Wang HL. Histologic analyses of human mineralized bone grafting material in sinus elevation procedures: a case series. Int J Periodontics Restorative Dent 2006;26:59-69.
  29. Cammack GV, Nevins M, Clem DS, Hatch JP, Mellonig JT. Histologic evaluation of mineralized and demineralized freeze-dried bone allograft for ridge and sinus augmentations. Int J Periodontics Restorative Dent 2005;25:231-7.
  30. Chaushu G, Vered M, Mardinger O, Nissan J. Histomorphometric analysis after maxillary sinus floor augmentation using cancellous bone-block allograft. J Periodontol 2010;81:1147-52. https://doi.org/10.1902/jop.2010.090751
  31. Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, Caputi S, Perrotti V, Mangano C, Piattelli A. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent 2006;15:197-207. https://doi.org/10.1097/01.id.0000220120.54308.f3
  32. Szabo G, Huys L, Coulthard P, Maiorana C, Garagiola U, Barabas J, Nemeth Z, Hrabak K, Suba Z. A prospective multicenter randomized clinical trial of autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation. Int J Oral Maxillofac Implants 2005;20:371-81.
  33. Kim YK, Yun PY, Lim SC, Kim SG, Lee HJ, Ong JL. Clinical evaluations of OSTEON as a new alloplastic material in sinus bone grafting and its effect on bone healing. J Biomed Mater Res B Appl Biomater 2008;86:270-7.
  34. Kolerman R, Goshen G, Joseph N, Kozlovsky A, Shetty S, Tal H. Histomorphometric analysis of maxillary sinus augmentation using an alloplast bone substitute. J Oral Maxillofac Surg 2012;70:1835-43. https://doi.org/10.1016/j.joms.2012.04.034
  35. Kurkcu M, Benlidayi ME, Cam B, Sertdemir Y. Anorganic bovine-derived hydroxyapatite vs ${\beta}$-tricalcium phosphate in sinus augmentation: a comparative histomorphometric study. J Oral Implantol 2012;38:519-26. https://doi.org/10.1563/AAID-JOI-D-11-00061
  36. Ozyuvaci H, Bilgic B, Firatli E. Radiologic and histomorphometric evaluation of maxillary sinus grafting with alloplastic graft materials. J Periodontol 2003;74:909-15. https://doi.org/10.1902/jop.2003.74.6.909
  37. Karabuda C, Ozdemir O, Tosun T, Anil A, Olgac V. Histological and clinical evaluation of 3 different grafting materials for sinus lifting procedure based on 8 cases. J Periodontol 2001;72:1436-42. https://doi.org/10.1902/jop.2001.72.10.1436
  38. Wallace SS, Froum SJ, Cho SC, Elian N, Monteiro D, Kim BS, Tarnow DP. Sinus augmentation utilizing anorganic bovine bone (Bio-Oss) with absorbable and nonabsorbable membranes placed over the lateral window: histomorphometric and clinical analyses. Int J Periodontics Restorative Dent 2005;25:551-9.
  39. Zhang Y, Tangl S, Huber CD, Lin Y, Qiu L, Rausch-Fan X. Effects of Choukroun's platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation: a histological and histomorphometric study. J Craniomaxillofac Surg 2012;40:321-8. https://doi.org/10.1016/j.jcms.2011.04.020
  40. Orsini G, Scarano A, Piattelli M, Piccirilli M, Caputi S, Piattelli A. Histologic and ultrastructural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone-derived biomaterial. J Periodontol 2006;77:1984-90. https://doi.org/10.1902/jop.2006.060181
  41. Galindo-Moreno P, Avila G, Fernandez-Barbero JE, Aguilar M, Sanchez-Fernandez E, Cutando A, Wang HL. Evaluation of sinus floor elevation using a composite bone graft mixture. Clin Oral Implants Res 2007;18:376-82. https://doi.org/10.1111/j.1600-0501.2007.01337.x
  42. Peleg M, Garg AK, Misch CM, Mazor Z. Maxillary sinus and ridge augmentations using a surface-derived autogenous bone graft. J Oral Maxillofac Surg 2004;62:1535-44. https://doi.org/10.1016/j.joms.2004.06.048
  43. Artzi Z, Kozlovsky A, Nemcovsky CE, Weinreb M. The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted material. J Clin Periodontol 2005;32:193-9. https://doi.org/10.1111/j.1600-051X.2005.00656.x
  44. Hanisch O, Lozada JL, Holmes RE, Calhoun CJ, Kan JY, Spiekermann H. Maxillary sinus augmentation prior to placement of endosseous implants: A histomorphometric analysis. Int J Oral Maxillofac Implants 1999;14:329-36.
  45. Gonshor A, McAllister BS, Wallace SS, Prasad H. Histologic and histomorphometric evaluation of an allograft stem cell-based matrix sinus augmentation procedure. Int J Oral Maxillofac Implants 2011;26:123-31.
  46. Tarnow DP, Wallace SS, Froum SJ, Rohrer MD, Cho SC. Histologic and clinical comparison of bilateral sinus floor elevations with and without barrier membrane placement in 12 patients: Part 3 of an ongoing prospective study. Int J Periodontics Restorative Dent 2000;20:117-25.
  47. Froum SJ, Tarnow DP, Wallace SS, Rohrer MD, Cho SC. Sinus floor elevation using anorganic bovine bone matrix (OsteoGraf/N) with and without autogenous bone: a clinical, histologic, radiographic, and histomorphometric analysis-Part 2 of an ongoing prospective study. Int J Periodontics Restorative Dent 1998;18:528-43.
  48. Lambert F, Leonard A, Drion P, Sourice S, Layrolle P, Rompen E. Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Implants Res 2011;22:538-45. https://doi.org/10.1111/j.1600-0501.2010.02069.x
  49. Lee YM, Shin SY, Kim JY, Kye SB, Ku Y, Rhyu IC. Bone reaction to bovine hydroxyapatite for maxillary sinus floor augmentation: histologic results in humans. Int J Periodontics Restorative Dent 2006;26:471-81.
  50. De Leonardis D, Pecora GE. Prospective study on the augmentation of the maxillary sinus with calcium sulfate: histological results. J Periodontol 2000;71:940-7. https://doi.org/10.1902/jop.2000.71.6.940

피인용 문헌

  1. Applications of Moldable Autogenous Tooth Bone Graft (M-AutoBT) Mixed with Hydroxypropylmethyl Cellulose for Sinus Lifting vol.24, pp.4, 2015, https://doi.org/10.2485/jhtb.24.391
  2. Autogenous tooth bone graft block for sinus augmentation with simultaneous implant installation: a technical note vol.41, pp.5, 2015, https://doi.org/10.5125/jkaoms.2015.41.5.284
  3. Space maintenance in autogenous fresh demineralized tooth blocks with platelet-rich plasma for maxillary sinus bone formation: a prospective study vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-1886-1
  4. Evaluation of the Healing Potential of Demineralized Dentin Matrix Fixed with Recombinant Human Bone Morphogenetic Protein-2 in Bone Grafts vol.10, pp.9, 2017, https://doi.org/10.3390/ma10091049
  5. Osteogenic Potential of Demineralized Dentin Matrix as Bone Graft Material vol.26, pp.2, 2017, https://doi.org/10.2485/jhtb.26.223
  6. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model vol.9, pp.2, 2016, https://doi.org/10.3390/ma9020097
  7. Schneiderian Membrane Thickness and Clinical Implications for Sinus Augmentation: A Systematic Review and Meta-Regression Analyses vol.87, pp.8, 2016, https://doi.org/10.1902/jop.2016.160041
  8. Improving the Evaluation of Alveolar Bone Grafts with Cone Beam Computerized Tomography vol.53, pp.1, 2016, https://doi.org/10.1597/14-304
  9. Clinical Efficacy of Tooth-Bone Graft pp.1056-6163, 2017, https://doi.org/10.1097/ID.0000000000000687
  10. Histological Evaluation of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body vol.11, pp.5, 2018, https://doi.org/10.3390/ma11050714
  11. Efficacy of autogenous teeth for the reconstruction of alveolar ridge deficiencies: a systematic review vol.23, pp.12, 2014, https://doi.org/10.1007/s00784-019-02869-1
  12. Immediate implant placement in anterior teeth with grafting material of autogenous tooth bone vs xenogenic bone vol.19, pp.1, 2019, https://doi.org/10.1186/s12903-019-0970-7
  13. Bio-Absorption of Human Dentin-Derived Biomaterial in Sheep Critical-Size Iliac Defects vol.14, pp.1, 2014, https://doi.org/10.3390/ma14010223
  14. The Use of Autogenous Teeth for Alveolar Ridge Preservation: A Literature Review vol.11, pp.4, 2014, https://doi.org/10.3390/app11041853
  15. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique vol.18, pp.6, 2014, https://doi.org/10.3390/ijerph18063174
  16. Comparison of Autogenous Tooth Materials and Other Bone Grafts vol.18, pp.3, 2014, https://doi.org/10.1007/s13770-021-00333-4
  17. Tooth shell technique: A proof of concept with the use of autogenous dentin block grafts vol.66, pp.2, 2014, https://doi.org/10.1111/adj.12814
  18. Retrospective Study on Tooth Shell Technique Using Endodontically Treated Teeth in Lateral Ridge Augmentation vol.11, pp.13, 2014, https://doi.org/10.3390/app11135882
  19. Comparison of immunohistochemical analysis on sinus augmentation using demineralized tooth graft and bovine bone vol.47, pp.4, 2014, https://doi.org/10.5125/jkaoms.2021.47.4.269
  20. Biobanking in dentistry: A review vol.58, pp.None, 2014, https://doi.org/10.1016/j.jdsr.2021.12.002