DOI QR코드

DOI QR Code

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young (Department of Oral and Maxillofacial Surgery, Hallym University School of Medicine, Hallym University Sacred Heart Hospital) ;
  • Yang, Byoung-Eun (Department of Oral and Maxillofacial Surgery, Hallym University School of Medicine, Hallym University Sacred Heart Hospital) ;
  • Ahn, Jin-Hee (Department of Prosthodontics, Hallym University School of Medicine, Hallym University Sacred Heart Hospital) ;
  • Park, Sang O (Department of Emergency Medicine, Konkuk University School of medicine, Konkuk University Medical Center) ;
  • Shim, Hye-Won (Department of Prosthodontics, Hallym University School of Medicine, Hallym University Sacred Heart Hospital)
  • 투고 : 2014.05.12
  • 심사 : 2014.09.18
  • 발행 : 2014.12.31

초록

PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

키워드

참고문헌

  1. Becker BE, Becker W. Regeneration procedures: grafting materials, guided tissue regeneration, and growth factors. Curr Opin Dent 1991;1:93-7.
  2. Karring T, Nyman S, Gottlow J, Laurell L. Development of the biological concept of guided tissue regeneration-animal and human studies. Periodontol 2000 1993;1:26-35. https://doi.org/10.1111/j.1600-0757.1993.tb00204.x
  3. Hammerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000 2003;33:36-53. https://doi.org/10.1046/j.0906-6713.2003.03304.x
  4. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg 1988;81:672-6. https://doi.org/10.1097/00006534-198805000-00004
  5. Linde A, Thoren C, Dahlin C, Sandberg E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg 1993;51:892-7. https://doi.org/10.1016/S0278-2391(10)80111-9
  6. Hammerle CH, Jung RE, Feloutzis A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol 2002;29:226-31. https://doi.org/10.1034/j.1600-051X.29.s3.14.x
  7. Jung RE, Fenner N, Hammerle CH, Zitzmann NU. Longterm outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years. Clin Oral Implants Res 2013;24:1065-73. https://doi.org/10.1111/j.1600-0501.2012.02522.x
  8. Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 1989;4:19-25.
  9. Davarpanah M, Tecucianu JF, Slama M, Celletti R. Bone regeneration in implantology. The use of Gore-Tex membranes: GTAM. J Parodontol 1991;10:169-76.
  10. Machtei EE. The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis. J Periodontol 2001;72:512-6. https://doi.org/10.1902/jop.2001.72.4.512
  11. Simion M, Baldoni M, Rossi P, Zaffe D. A comparative study of the effectiveness of e-PTFE membranes with and without early exposure during the healing period. Int J Periodontics Restorative Dent 1994;14:166-80.
  12. Schmidmaier G, Baehr K, Mohr S, Kretschmar M, Beck S, Wildemann B. Biodegradable polylactide membranes for bone defect coverage: biocompatibility testing, radiological and histological evaluation in a sheep model. Clin Oral Implants Res 2006;17:439-44. https://doi.org/10.1111/j.1600-0501.2005.01242.x
  13. Warrer K, Karring T, Nyman S, Gogolewski S. Guided tissue regeneration using biodegradable membranes of polylactic acid or polyurethane. J Clin Periodontol 1992;19:633-40. https://doi.org/10.1111/j.1600-051X.1992.tb01711.x
  14. Sevor JJ, Meffert RM, Cassingham RJ. Regeneration of dehisced alveolar bone adjacent to endosseous dental implants utilizing a resorbable collagen membrane: clinical and histologic results. Int J Periodontics Restorative Dent 1993;13:71-83.
  15. Tams J, Rozema FR, Bos RR, Roodenburg JL, Nikkels PG, Vermey A. Poly(L-lactide) bone plates and screws for internal fixation of mandibular swing osteotomies. Int J Oral Maxillofac Surg 1996;25:20-4. https://doi.org/10.1016/S0901-5027(96)80006-3
  16. Wu L, Ding J. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2004;25:5821-30. https://doi.org/10.1016/j.biomaterials.2004.01.038
  17. Taylor MS, Daniels AU, Andriano KP, Heller J. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater 1994;5:151-7. https://doi.org/10.1002/jab.770050208
  18. Zitzmann NU, Scharer P, Marinello CP. Long-term results of implants treated with guided bone regeneration: a 5-year prospective study. Int J Oral Maxillofac Implants 2001;16:355-66.
  19. Fishman JA, Scobie L, Takeuchi Y. Xenotransplantation-associated infectious risk: a WHO consultation. Xenotransplantation 2012;19:72-81. https://doi.org/10.1111/j.1399-3089.2012.00693.x
  20. Pauli G. Tissue safety in view of CJD and variant CJD. Cell Tissue Bank 2005;6:191-200. https://doi.org/10.1007/s10561-005-0336-z
  21. van Leeuwen AC, Huddleston Slater JJ, Gielkens PF, de Jong JR, Grijpma DW, Bos RR. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. Acta Biomater 2012;8:1422-9. https://doi.org/10.1016/j.actbio.2011.12.004
  22. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003;24:401-16. https://doi.org/10.1016/S0142-9612(02)00353-8
  23. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514-24. https://doi.org/10.3390/ijms10041514
  24. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25:1289-97. https://doi.org/10.1016/j.biomaterials.2003.08.045
  25. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54:139-48. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  26. Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, Kim TI, Park YJ, Seol YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 2005;120:327-39. https://doi.org/10.1016/j.jbiotec.2005.06.033
  27. Bosch C, Melsen B, Vargervik K. Importance of the critical-size bone defect in testing bone-regenerating materials. J Craniofac Surg 1998;9:310-6. https://doi.org/10.1097/00001665-199807000-00004
  28. Gielkens PF, Schortinghuis J, de Jong JR, Raghoebar GM, Stegenga B, Bos RR. Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT. Clin Oral Implants Res 2008;19:516-21. https://doi.org/10.1111/j.1600-0501.2007.01511.x
  29. Ruegsegger P, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 1996;58:24-9. https://doi.org/10.1007/BF02509542
  30. Dalstra M, Verna C, Cacciafesta V, Andreassen TT, Melsen B. Micro-computed tomography to evaluate bone remodeling and mineralization. Adv Exp Med Biol 2001;496:9-19. https://doi.org/10.1007/978-1-4615-0651-5_2
  31. Verna C, Dalstra M, Wikesjo UM, Trombelli L; Carles Bosch. Healing patterns in calvarial bone defects following guided bone regeneration in rats. A micro-CT scan analysis. J Clin Periodontol 2002;29:865-70. https://doi.org/10.1034/j.1600-051X.2002.290912.x
  32. Coelho PG, Giro G, Kim W, Granato R, Marin C, Bonfante EA, Bonfante S, Lilin T, Suzuki M. Evaluation of collagen-based membranes for guided bone regeneration, by three-dimensional computerized microtomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:437-43. https://doi.org/10.1016/j.oooo.2011.11.032
  33. Gielkens PF, Schortinghuis J, de Jong JR, Huysmans MC, Leeuwen MB, Raghoebar GM, Bos RR, Stegenga B. A comparison of micro-CT, microradiography and histomorphometry in bone research. Arch Oral Biol 2008;53:558-66. https://doi.org/10.1016/j.archoralbio.2007.11.011
  34. Dahlin C, Andersson L, Linde A. Bone augmentation at fenestrated implants by an osteopromotive membrane technique. A controlled clinical study. Clin Oral Implants Res 1991;2:159-65. https://doi.org/10.1034/j.1600-0501.1991.020401.x
  35. Uebersax L, Hagenmuller H, Hofmann S, Gruenblatt E, Muller R, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L. Effect of scaffold design on bone morphology in vitro. Tissue Eng 2006;12:3417-29. https://doi.org/10.1089/ten.2006.12.3417

피인용 문헌

  1. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0132344
  2. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering vol.133, pp.3, 2015, https://doi.org/10.1002/app.42883
  3. Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair vol.28, pp.6, 2017, https://doi.org/10.1007/s10856-017-5898-3
  4. Silk Protein-Based Membrane for Guided Bone Regeneration vol.8, pp.8, 2018, https://doi.org/10.3390/app8081214
  5. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration vol.30, pp.2, 2019, https://doi.org/10.1007/s10856-019-6225-y
  6. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair vol.65, pp.12, 2014, https://doi.org/10.1080/00914037.2016.1149849
  7. Silk fibroin as biomaterial for bone tissue engineering vol.31, pp.None, 2014, https://doi.org/10.1016/j.actbio.2015.09.005
  8. The fabrication of an ICA-SF/PLCL nanofibrous membrane by coaxial electrospinning and its effect on bone regeneration in vitro and in vivo vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-07759-8
  9. BMP-2-Immobilized Porous Matrix with Leaf-Stacked Structure as a Bioactive GBR Membrane vol.10, pp.36, 2014, https://doi.org/10.1021/acsami.8b09558
  10. Protein based devices for oral tissue repair and regeneration vol.5, pp.2, 2014, https://doi.org/10.3934/matersci.2018.2.156
  11. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model vol.11, pp.16, 2014, https://doi.org/10.1021/acsami.8b22724
  12. Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization vol.107, pp.8, 2019, https://doi.org/10.1002/jbm.a.36699
  13. Guided Regeneration of Rabbit Calvarial Defects Using Silk Fibroin Nanofiber-Poly(glycolic acid) Hybrid Scaffolds vol.5, pp.10, 2014, https://doi.org/10.1021/acsbiomaterials.9b00678
  14. Silk Fibroin as a Functional Biomaterial for Tissue Engineering vol.22, pp.3, 2021, https://doi.org/10.3390/ijms22031499
  15. Physical and biological performances of a semi-resorbable barrier membrane based on silk fibroin-glycerol-fish collagen material for guided bone regeneration vol.36, pp.5, 2014, https://doi.org/10.1177/08853282211025781