DOI QR코드

DOI QR Code

Physiological Responses in Korean Rockfish (Sebastes schlegeli) Exposed to Ammonia

암모니아 노출에 따른 조피볼락(Sebastes schlegeli)의 생리학적 반응

  • Min, Byung Hwa (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Park, Mi Seon (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Shin, Yun Kyung (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Do, Yong Hyun (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Myeong, Jeong-In (Aquaculture Management Division, National Fisheries Research & Development Institute)
  • 민병화 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 박미선 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 신윤경 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 도용현 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 명정인 (국립수산과학원 전략양식연구소 양식관리과)
  • Received : 2014.12.03
  • Accepted : 2014.12.09
  • Published : 2014.12.31

Abstract

The aim of the present study was to assess the effects of ammonia on physiological responses in Korean rockfish (Sebastes schlegeli). Interestingly, no mortality were observed when the specimens ($301.1{\pm}8.0g$) were exposed to five levels of un-ionized ammonia ($NH_3$) (control, 1, 2, 4, $8mg\;L^{-1}$) for 3 hours. Furthermore, a significantly higher increase in gill $Na^+/K^+$-ATPase (NKA) pump activity with was detected due to the ammonia exposure. The activity of the fishes were found to be 4 and $8mg\;L^{-1}$ $NH_3$, which was significantly high compared to normal $1mg\;L^{-1}$ $NH_3$. Although ammonia exposure had no effect on plasma $Cl^-$, exposure to both 4 and $8mg\;L^{-1}$ $NH_3$, however it led to increase in the plasma $Na^+$, $K^+$ and osmolality levels. Also, prolong ammonia exposure cause increase of plasma cortisol and glucose levels. The increase in glucose was accompanied by an increase in cortisol. The fish exposed to 4 and $8mg\;L^{-1}$ $NH_3$ showed significantly higher hematocrit than control group than those exposed to 1 and $2mg\;L^{-1}$ $NH_3$. The intensity of cell damage increased with the increase concentration and exposure to ammonia. Furthermore, hyperplasia, separation and epithelial necrosis were also observed in gill tissues. Taken together, the results showed that direction of changes to the investigated parameters can be used to determine the physiological responses of Korean rockfish to ammonia.

본 연구에서는 암모니아 노출에 따른 조피볼락의 생리학적 반응을 조사하고자 아가미 $Na^+/K^+$-ATPase (NKA) 활성을 비롯한 혈장 parameters를 분석하였다. 실험구의 암모니아 농도는 대조구(자연해수), 1, 2, 4, $8mg\;L^{-1}$였으며, 조피볼락을 각각의 실험구에 3시간동안 노출한 다음 혈액 및 아가미 조직을 샘플링하였다. 실험구의 암모니아 농도가 높아질수록 혈장 암모니아 농도가 증가하였으며, 아가미 NKA 활성 또한 증가하는 경향을 보였다. 혈장 $Cl^-$를 제외한 외부의 암모니아 영향을 받지 않았으나, 4, $8mg\;L^{-1}$구의 $Na^+$, $K^+$ 및 삼투질농도는 대조구 및 1, $2mg\;L^{-1}$구보다 유의하게 높았다. 암모니아 노출에 따른 조피볼락의 혈장 코티졸은 암모니아 농도와 선형관계를 보였으며, 혈장 글루코스 또한 코티졸과 동반상승하는 것으로 나타났다. 1, $2mg\;L^{-1}$구의 hematocrit는 대조구와 차이를 보이지 않았으나, 4, $8mg\;L^{-1}$구는 나머지 실험구보다 유의하게 높았다. 암모니아 농도가 높을수록 아가미 조직 손상은 심하였으며, 특히 4, $8mg\;L^{-1}$구에서는 상피세포의 과증식, 분리, 괴사 및 2차새변의 곤봉화(club-shaped lamella) 현상이 관찰되었다.

Keywords

References

  1. Alam M and TL Frankel. 2006. Gill ATPase activities of silver perch, Bidyanus bidyanus (Mitchell), and golden perch, Macquaria ambigua (Richardson): effects of environmental salt and ammonia. Aquaculture 251:118-133. https://doi.org/10.1016/j.aquaculture.2005.05.028
  2. Barton BA and CB Schreck. 1987. Influence of acclimation temperature on interrenal and carbohydrate stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha). Aquaculture 62:299-310. https://doi.org/10.1016/0044-8486(87)90172-4
  3. Barton BA and GK Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish. Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  4. Benli ACK, G Koksal and A Ozkul. 2008. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology. Chemosphere 72:1355-1358. https://doi.org/10.1016/j.chemosphere.2008.04.037
  5. Chew SF, KC Hiong, SP Lam, SW Ong, WL Wee, WP Wong and YK IP. 2014. Functional roles of $Na^+/K^+$-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri. Front. Physiol. doi: 10.3389/fphys.2014.00158.
  6. Chin P, YK Shin, HK Kim, JS Lee and HS Kim. 1998. Biological study on the increment of survival rate during early life cycle in the rockfish, Sebastes schlegeli. I. Effects of ammonia on survival and growth of the larvae and juveniles stages. Korean J. Ichthyol. 10:98-105.
  7. Dosdat A, J Person-Le Ruye, D Coves, G Dutto, E Gasset, A Le Roux and G Lemarie. 2003. Effect of chronic exposure to ammonia on growth, food utilization and metabolism of the European sea bass (Dicentrarchus labrax). Aquat. Living Resour. 16:509-520. https://doi.org/10.1016/j.aquliv.2003.08.001
  8. Evans DH, PM Piermarini and KP Choe. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85:97-177. https://doi.org/10.1152/physrev.00050.2003
  9. Evans DH, PM Piermarini and WTW Potts. 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283:641-652. https://doi.org/10.1002/(SICI)1097-010X(19990601)283:7<641::AID-JEZ3>3.0.CO;2-W
  10. Fivelstad S, H Kallevik, HM Iversen, T Moretro, K Vage and M Binde. 1993. Sublethal effects of ammonia in soft water on Atlantic salmon smolts at a low temperature. Aquacult. Int. 1:157-169. https://doi.org/10.1007/BF00692618
  11. Foss A, AK Imsland, B Roth, E Schram and SO Stefansson. 2009. Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (Scophthalmus maximus). Aquaculture 296:45-50. https://doi.org/10.1016/j.aquaculture.2009.07.013
  12. Hwang PP, CM Sun and SM Wu. 1989. Changes of plasma osmolality, chloride concentration and gill Na-K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100, 295-299. https://doi.org/10.1007/BF00391142
  13. Ip YK and SF Chew and DJ Randall. 2001. Ammonia toxicity, tolerance and excretion. pp. 109-148. In Fish Physiology, Nitrogen Excretion (Wright PA and PM Anderson eds.). Academic Press, New York, USA.
  14. Kim HS, HY Kim and P Chin. 1997. Effect of ammonia on survival and growth of the flounder larva, Paralichthys olivaceus. J. Korean Fish. Soc. 30:488-495.
  15. Knoph MB and K Thorud. 1996. Toxicity of Ammonia to Atlantic Salmon (Saho salar L.) in Seawater-effects on plasma osmolality, ion, ammonia, urea and glucose levels and hematologic parameters. Comp. Biochem. Physiol. 113:375-381.
  16. Knoph MB and YA Olsen. 1994. Subacute toxicity of ammonia to Atlantic salmon (Salmo salar L.) in seawater: effects on water and salt balance, plasma cortisol and plasma ammonia levels. Aquat. Toxicol. 30:295-310. https://doi.org/10.1016/0166-445X(94)00046-8
  17. Li M, N Yu, JG Qin, E Li, Z Du and L Chen. 2014. Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli. Fish Shellfish Immunol. 38:158-165. https://doi.org/10.1016/j.fsi.2014.03.015
  18. McCormick SD. 2001. Endocrine control of osmoregulation in teleost fish. Am. Zool. 41:781-794. https://doi.org/10.1668/0003-1569(2001)041[0781:ECOOIT]2.0.CO;2
  19. Mommsen TP, MM Vijayan and TW Moon. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisher. 9:211-268. https://doi.org/10.1023/A:1008924418720
  20. Olsen YA, IE Einarsdottir and KJ Nilssen. 1995. Metomidate anaesthesia in Atlantic salmon, Salmo salar, prevents plasma cortisol increase during stress. Aquaculture 134:155-168. https://doi.org/10.1016/0044-8486(95)00008-P
  21. Ortega VA, KJ Renner and NJ Bernier. 2005. Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. J. EXP. Biol. 208:1855-1866. https://doi.org/10.1242/jeb.01577
  22. Person-Le Ruyet J, A Lamers, A Le Roux, A Severe, G Boeuf and N Mayer-Gostan. 2003. Long term ammonia exposure of turbot: effects on plasma parameters. J. Fish Biol. 62:879-894. https://doi.org/10.1046/j.1095-8649.2003.00073.x
  23. Randall DJ and TKN Tsui. 2002. Ammonia toxity in fish. Mar. Pollut. Bull. 45:17-23. https://doi.org/10.1016/S0025-326X(02)00227-8
  24. Randall DJ, JM Wilson, KW Peng, TWK Kok, SSL Kuah, SF Chew, TJ Lam and YK Ip. 1999. The mudskipper, Periophthalmodon schlosseri, actively transports $NH_4^+$ against a concentration gradient. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277:1562-1567.
  25. Robertson L, P Thomas and CR Arnold. 1988. Plasma cortisol and secondary stress responses of cultured red drum (Sciaenops ocellatus) to several transportation procedures. Aquaculture 68:115-130. https://doi.org/10.1016/0044-8486(88)90235-9
  26. Sinha AK, HJ Liew, M Diricx, R Blust and G De Boeck. 2012. The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in goldfish (Carassius auratus L.). Aquat. Toxicol. 109:33-46. https://doi.org/10.1016/j.aquatox.2011.11.002
  27. Tsui TKN, CYC Hung, CM Nawata, JM Wilson, PA Wright and CM Wood. 2009. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical $Na^+/NH_4^+$ exchange complex. J. Exp. Biol. 212:878-892. https://doi.org/10.1242/jeb.021899
  28. Vijayan MM, CE Pereira, G Grau and GK Iwama. 1997. Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp. Biochem. Physiol. 116C:89-95.
  29. Wajsbrot N, A Gasith, A Diamant and DM Popper. 1993. Chronic toxicity of ammonia to juvenile gilthead seabream Sparus aurata and related histopathological effects. J. Fish Biol. 43:321-328.
  30. Wendelaar Bonga SE. 1997. The stress response in fish. Physiol. Rev. 77:591-625.
  31. Wilkie MP. 2002. Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. J. Exp. Zool. 293:284-301. https://doi.org/10.1002/jez.10123
  32. Wilson RW and EW Taylor. 1992. Transbranchial ammonia gradients and acidbase responses to high external ammonia in rainbow trout (Oncorhynchus mykiss) acclimated to different salinities. J. Exp. Biol. 166:95-112.
  33. Wood CM and CM Nawata. 2011. A nose-to-nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater. J. Exp. Biol. 214:3557-3569. https://doi.org/10.1242/jeb.057802