DOI QR코드

DOI QR Code

Geographical Variations of Sargassum thunbergii Morphology in Korea

한국산 갈조식물 지충이의 지리적 형태변이

  • Kim, Sangil (Department of Marine Life Sciences, Jeju National University) ;
  • Oh, Yoon Sik (Department of Biology, Gyeongsang National University) ;
  • Won, Nam-Il (K-Water Research Institute, Korea Water Resources Corporation) ;
  • Park, Sang Rul (Department of Marine Life Sciences, Jeju National University)
  • 김상일 (제주대학교 해양생명과학과) ;
  • 오윤식 (경상대학교 생물학과) ;
  • 원남일 (한국수자원공사 K-water 연구원) ;
  • 박상률 (제주대학교 해양생명과학과)
  • Received : 2014.11.11
  • Accepted : 2014.12.09
  • Published : 2014.12.31

Abstract

In this study, we investigated the effect of geographical variations on Sargassum thunbergii morphology to make a taxonomic reconsideration about infraspecific taxa in this species. In order to examine the morphological characteristics of S. thunbergii, total 27 matured and morphologically intact thalli were collected from the east, west and south coast in spring 2011. Interestingly, it was observed that the species populations on the west coast were characterized by short, thin and coarse thallus, and soft texture. However, the populations on the east coast showed thicker thallus, larger leaf and vesicle, and tougher texture. Thallus height of S. thunbergii was found to be similar at both east and west coast. Further, the height of the thallus and lateral branch of the species populations residing south coast were highest whereas the size of leaf and vesicle are shortest, in comparison with east and west coast species. Although morphological characteristics of the north east coast populations corresponded to the original description of S. thunbergii f. latifolium, we could not find exact morphological features and diagnostic characters to distinguish form in S. thunbergii. These results indicated that it is not the optimal characteristics to identify infraspecific form in this species. In contrast, morphological variations may signify the adaptation of this species to local environmental factors. Thus, we recommend that intraspecific morphological variation of S. thunbergii should be carefully used to identify infraspecific taxa.

이번 연구는 한국산 지충이 [Sargassum thunbergii (Mertens ex Roth) Kuntze]의 지리적 형태변이를 확인하고, 형태변이에 따른 품종의 구분에 대하여 분류학적 재검토를 시도하였다. 동해, 서해와 남해안에 분포하는 지충이 개체군의 지리적 형태변이를 조사하기 위해서 개체가 가장 성숙한 시기인 봄철에 채집하였다. 지충이의 관찰대상 형질은 부착기, 줄기의 길이와 직경, 체장, 중심가지의 직경, 마디간격, 측지의 길이와 직경, 잎의 길이와 폭 및 두께, 기낭의 길이와 직경, 기낭 자루와 기낭 돌기의 길이, 생식기탁의 길이와 직경, 질감이었다. 서해안의 지충이는 엽체가 짧고 가늘며, 마디간격이 넓어서 성긴 느낌이고 질감이 부드러워 다른 두 해역의 지충이와는 다른 형태적 특징을 보였다. 동해안의 지충이는 체장이 서해안의 것과 비슷하지만 중심가지와 측지가 굵어서 질감이 거칠고, 측지가 없거나 매우 짧은 것도 있으며, 잎과 기낭이 다른 해역에 비해 컸다. 남해안의 지충이는 체장과 측지가 가장 길고 잎과 기낭이 짧은 것이 특징이었다. 동해안 북부에서 채집된 개체들은 f. latifolium과 형질이 유사하였다. 그러나 다른 해역에서는 네 품종의 원기재와 정확히 일치하지 않아 품종을 구분하는 식별형질은 한국산 지충이의 형태 변이에 적용할 수 없었다. 따라서 생육지에 따라 나타나는 지충이의 다양한 형태변이는 종 이하의 분류군으로 나누는 것보다는 생육지 환경조건에 따른 변이체로 보는 것이 타당할 것으로 사료된다.

Keywords

References

  1. Cho TH and SM Boo. 1998. Marine flora of Oeyondo Islands on the Yellow Sea, Korea: II. Brown Algae. Algae 13:13-27.
  2. Chu S, Q Zhang, S Liu, S Zhang, Y Tang, Z Lu and Y Yu. 2011. Trade-off between vegetative regeneration and sexual reproduction of Sargassum thunbergii. Hydrobiologia 678:127-135. https://doi.org/10.1007/s10750-011-0835-9
  3. Chu S, QS Zhang, SK Liu, YZ Tang, SB Zhang, ZC Lu and YQ Yu. 2012. Tolerance of Sargassum thunbergii germlings to thermal, osmotic and desiccation stress. Aquat. Bot. 96:1-6. https://doi.org/10.1016/j.aquabot.2011.09.002
  4. D'Amours O and RE Scheibling. 2007. Effect of wave exposure on morphology, attachment strength and survival of the invasive green alga Codium fragile ssp. tomentosoides. J. Exp. Mar. Biol. Ecol. 351:129-142. https://doi.org/10.1016/j.jembe.2007.06.018
  5. de Paula EJ and EC de Oliveira F. 1982. Wave exposure and ecotypical differentiation in Sargassum cymosum (Phaeophyta-Fucales). Phycologia 21:145-153. https://doi.org/10.2216/i0031-8884-21-2-145.1
  6. Fowler-Walker M, T Wernberg and S. Connell. 2006. Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits? Mar. Biol. 148:755-767. https://doi.org/10.1007/s00227-005-0125-z
  7. Ganzon-Fortes ET. 1997. Influence of tidal location on morphology, photosynthesis and pigments of the agarophyte, Gelidiella acerosa, from northern Philippines. J. Appl. Phycol. 9:525-32.
  8. Gerard VA and KH Mann. 1979. Growth production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15:33-41. https://doi.org/10.1111/j.0022-3646.1979.00033.x
  9. Kalvas A and L Kautsky. 1998. Morphological variation in Fucus Vesiculosus populations along temperature and salinity gradients in Iceland. J. Mar. Biol. Ass. U.K. 78:985-1001. https://doi.org/10.1017/S0025315400044921
  10. Kawamata S. 2001. Adaptive mechanical tolerance and dislodgement velocity of the kelp Laminaria japonica in wave-induced water motion. Mar. Ecol. Prog. Ser. 211:89-104. https://doi.org/10.3354/meps211089
  11. Kim YH and JS Yoo. 1994. Patterns of Algal Succession in a Sargassum thunbergii (Phaeophyta) Dominated Rocky Intertidal Community. Algae 9:59-65.
  12. Kim YH, EH Kim, C Lee, MH Kim and JR Rho. 2007. Two new monogalactosyl diacylglycerols from brown alga Sargassum thunbergii. Lipids 42:395-399. https://doi.org/10.1007/s11745-007-3035-7
  13. Koh CH, Y Kim and SG Kang. 1993. Size distribution, growth and production of Sargassum thunbergii in an intertidal zone of Padori, west coasts of Korea. Hydrobiologia 260/261:207-214. https://doi.org/10.1007/BF00049021
  14. Kubler JE and SR Dudgeon. 1996. Temperature dependent change in the complexity of form of Chondrus crispus fronds. J. Exp. Mar. Biol. Ecol. 207:15-24. https://doi.org/10.1016/S0022-0981(96)02651-2
  15. Li XM, Q Zhang, YZ Tang, YQ Yu, HL Liu and LX Li. 2014. Highly efficient photoprotective responses to high light stress in Sargassum thunbergii germlings, a representative brown macroalga of intertidal zone. J. Sea. Res. 85:491-498. https://doi.org/10.1016/j.seares.2013.08.004
  16. Lobban CS and PJ Harrison. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge.
  17. Oak JH and IK Lee. 2005. Taxonomy of the Genus Sargassum (Fucales, Phaeophyceae) from Korea-1. Subgenus Bactrophycus Section Teretia. Algae 20:77-90. https://doi.org/10.4490/ALGAE.2005.20.2.077
  18. Okamura K. 1923. Icones of Japanese Algae (5). Kazamashobo, Tokyo.
  19. Park PJ, SJ Heo, EJ Park, SK Kim, HG Byun, BT Jeon and YJ Jeon. 2005. Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. J. Agr. Food Chem. 53:6666-6672. https://doi.org/10.1021/jf050582+
  20. Ralph PJ, DA Morrison and A Addison. 1998. A quantitative study of the patterns of morphological variation within Hormosira banksii (Turner) Decaisne (Fucales: Phaeophyta) in south-eastern Australia. J. Exp. Mar. Biol. Ecol. 225:285-300. https://doi.org/10.1016/S0022-0981(97)00232-3
  21. Umezaki I. 1974. Ecological studies of Sargassum thunbergii (Mertens) O. Kuntze in Maizuru Bay, Japan Sea. Biol. Mag. Tokyo 87: 285-292. https://doi.org/10.1007/BF02489559
  22. Yendo K. 1907. The Fucaceae of Japan. J. Coll. Sci. Tokyo Imp. Univ. 21:1-174.
  23. Yoo SA. 1975. Some members of the Fucales (Phaeophyta) in Korea. Thesis MS Seoul National Univ. 145 pp. pls. 26. Seoul.
  24. Yoshida T. 1983. Japanese species of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). J. Fac. Sci. Hokkaido Univ. Ser. 5 (Botany). 13:142-148.
  25. Yu Y, Q Zhang, Z Lu, Y Tang, S Zhang and S Chu. 2012. Small-scale spatial and temporal reproductive variability of the brown macroalga Sargassum thunbergii in contrasting habitats: A study on the island of Xiaoheishan, Changdao Archipelago, China. Estuar. Coast. Shelf. Sci., 112:280-286. https://doi.org/10.1016/j.ecss.2012.08.001
  26. Zhang QS, W Li, S Liu and JH Pan. 2009. Size-dependence of reproductive allocation of Sargassum thunbergii (Sargassaceae, Phaeophyta) in Bohai Bay, China. Aquat. Bot. 91:194-198. https://doi.org/10.1016/j.aquabot.2009.06.003