DOI QR코드

DOI QR Code

Characteristics of Accumulated Soil Carbon and Soil Respiration on Vegetation in Namhangang Basin

남한강 수변역식생의 토양탄소축적량과 토양호흡 특성

  • Jung, Jisun (Department of Biological Sciences, Konkuk University) ;
  • Yi, Joonseok (Department of Biological Sciences, Konkuk University) ;
  • Lee, Jaeho (Ecosystem Assessment Division, National Institute of Ecology) ;
  • Shim, Kyomoon (Division of Agro-Climate Change & Ecology, National Academy of Agricultural Science) ;
  • Lee, Jaeseok (Department of Biological Sciences, Konkuk University)
  • 정지선 (건국대학교 생명과학과) ;
  • 이준석 (건국대학교 생명과학과) ;
  • 이재호 (국립생태원 생태평가부) ;
  • 심교문 (국립농업과학원 기후변화생태과) ;
  • 이재석 (건국대학교 생명과학과)
  • Received : 2014.12.06
  • Accepted : 2014.12.15
  • Published : 2014.12.31

Abstract

Various ecosystem carry out fundamental function of material circulation and energy flow through interrelationship with many environmental factors. Therefore, it is crucial to scientifically understand the value of nature to deduce correlation between environmental factor and change of ecosystem function. In this study, we determined the accumulated ecosystem carbon and characteristics of soil respiration on grassland vegetation in Namahangang basin in Namhangang Basin. It was found that the rate of soil respiration was highly correlated with the soil temperature in all communities. The measured soil respiration rates were $1,539mgCO_2\;m^{-2}h^{-1}$, $1,200mgCO_2\;m^{-2}h^{-1}$, $1,215mgCO_2\;m^{-2}h^{-1}$ in Miscanthus sacchariflorus, Phragmites japonica, Salix koreensis communities, respectively. Also, carbon quantities accumulated in litter and soil layers were $40.6tCha^{-1}$ (1.9+38.7), $46.9tCha^{-1}$ (43.0+3.9), $31.2tCha^{-1}$ (28.9+2.3) in M. sacchariflorus, P. japonica, S. koreensis communities, respectively.

생태계가 담당하는 기능의 크기와 그 변화에 관여하는 환경요인과의 상호관계성 도출은 생태계의 과학적 속성 이해에 필수불가결한 요소이다. 본 연구는 수변의 특이적 환경조건에 의해 주기적인 교란과 토양 퇴적환경이 발달하는 하천 수변지역에 형성되어 있는 하천식생에 대해 토양탄소축적량을 정량하고 그러한 식생의 토양으로부터 방출되는 토양호흡과 환경요소 자료를 수집하여 각 요소의 상호간의 관계성을 분석하였다. 남한강 여주지역에서 물억새, 달뿌리풀, 버드나무에서 토양호흡은 2009년 8월부터 11월까지 각 군락에서 수집하였으며, 토양탄소축적량은 각 군락의 3지점에서 수집하였다. 토양호흡은 지온변화에 민감하게 반응하였으며, 가장 높게 관찰되는 8월의 토양호흡값은 달뿌리풀군락, 물억새군락, 버드나무군락에서 각각 $1,539mgCO_2\;m^{-2}$, $1,200mgCO_2\;m^{-2}$, $1,215mgCO_2\;m^{-2}$으로 측정되었다. 이러한 자료를 바탕으로 산정한 연간 토양호흡량은 달뿌리풀군락, 물억새군락, 버드나무군락에서 각각 $19.8tCha^{-1}yr^{-1}$, $30.1tCha^{-1}yr^{-1}$, $22.0tCha^{-1}yr^{-1}$으로 산정되어 물억새군락의 토양에 가장 높은 탄소가 축적된 것으로 평가되었다. 한편, 토양탄소축적량 (리터층+토양층)은 달뿌리풀군락, 물억새군락, 버드나무군락에서 각각 $40.6tCha^{-1}$ (1.9+38.7), $46.9tCha^{-1}$ (43.0+3.9), $31.2tCha^{-1}$ (28.9+2.3)으로 물억새군락의 토양에 가장 많은 탄소가 축적된 것으로 조사되었으며 이는 물억새군락의 높은 지상부 생산성에서 기인하는 것으로 판단된다.

Keywords

References

  1. Devidson EA, LV Verchot, JH Cattani, IL Ackerman and JEM Carvalho. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53-69. https://doi.org/10.1023/A:1006204113917
  2. Eswaran H, E Ban den Berg P Reich and J Kimble. 1995. Global soil carbon resources. pp. 27-44. In Soils and Global Change (Lal R, JM Kimble, E Levine, BA Stewart, eds.). CRC-Press.
  3. Guntinas ME, F Gil-Sotres, MC Leiros and C Trasar-Cepeda. 2013. Sensitivity of soil respiration to moisture and temperature. J. Soil Sci. Plant Nutr. 13:445-461.
  4. Jeong HM, HR Kim, DH Shim, KM Lee, SH Lee, YS Han, RH Jang, SK Lee, TK Kim and YH You. 2013. Litter production and soil organic carbon dynamics of Pinus densiflora, Quercus monogolica and Robinia pseudo-acacia forests in Mt. Nam. Korean J. Environ. Biol. 31:87-95. https://doi.org/10.11626/KJEB.2013.31.2.087
  5. Kern JS. 1994. Spatial patterns of soil organic carbon in the contiguous United States. Soil Sci. Soc. Am. J. 58:439-455. https://doi.org/10.2136/sssaj1994.03615995005800020029x
  6. Korean Meterological Administration. 2011. Climatological Normals of Korea (11-1360000-000077-14): 1981-2010.
  7. Lee EH, JH Lim and JS Lee. 2010. A review on soil respiration measurement and its application in Korea. Korean J. Agric. For. Meteorol. 12:264-276. https://doi.org/10.5532/KJAFM.2010.12.4.264
  8. Lee JH, JS Yi, YM Chun, NY Chae and JS Lee. 2013. Discussion of Soil Respiration for Understanding Ecosystem Carbon Cycle in Korea. Korean J. Environ. Ecol. 46:309-317.
  9. Lee JS. 2004. A study on change of an accumulated carbon according to successional stage on temperate grassland. Korean J. Environ. Biol. 22:1-6.
  10. Lee JY. 2013. The evaluation of stream naturalness and the changes of vegetation biotope in namhan river basin. Doctoral dissertation in Mokpo Univ.
  11. Lee MS. 2003. Method for assessing forest carbon sinks by ecological processing-based approach - a case study for Takayama station, Japan. Korean J. Ecol. 26:289-296. https://doi.org/10.5141/JEFB.2003.26.5.289
  12. Liang N, T Nakadai, T Hirano, L Qu, T Koike, Y Fujinuma and G Inoue. 2004. In situ comparison of four approaches to estimating soil $CO_2$ efflux in a northern larch (Larix kaempferi) forest. Agric. For. Meteorol. 123:97-117. https://doi.org/10.1016/j.agrformet.2003.10.002
  13. Oliver H, AF Lotter and G Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25:101-110. https://doi.org/10.1023/A:1008119611481
  14. Peter RG, WM Post and K Hennessy. 2006. The potential impact of climate change on Australia's soil organic carbon resources. Carbon balance manage. 1:14. https://doi.org/10.1186/1750-0680-1-14
  15. Saigusa N and T Oikawa. 1994. $CO_2$ and water exchange between grassland ecosystem and atmosphere. Bull. Environ. Res. Center 19:105-106.
  16. Saigusa N, T Oikawa and S Liu. 1998. Seasonal variations of the exchange of $CO_2$ and $H_2O$ between a grasslandand the atmosphere: An experimental study. Agric. For. Meteorol. 89:131-139. https://doi.org/10.1016/S0168-1923(97)00060-9
  17. Santisteban JI, R Meiavilla, E Lopez-Pamo, CJ Dabrio, MB Ruiz Zapata, MJ Gil Garcia, S Castano and PE Martinez-Alfaro. 2004. Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolimnol. 32:287-299. https://doi.org/10.1023/B:JOPL.0000042999.30131.5b
  18. Suh SU, YK Min and JS Lee. 2005. Seasonal variation of contribution of leaf-litter decomposition rate in soil respiration in temperate deciduous forest. Korean J. Agric. For. Meteorol. 7: 57-65.
  19. Toda M, N Saigusa, T Oikawa and F Kimura. 2000. Seasonal changes of $CO_2$ and $H_2O$ exchanges over a temperate grassland. J. Agric. For. Meteorol. 56:195-207. https://doi.org/10.2480/agrmet.56.195
  20. Wang G, J Qian, G Cheng and Y Lai. 2002. Soil organic carbon pool of grassland on the Qinghai-Tibetan plateau and its global implication. Sci. Total Environ. 291:207-217. https://doi.org/10.1016/S0048-9697(01)01100-7
  21. Wang W, W Zeng, W Chen, H Zeng and J Fang. 2013. Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China. Plos One 8:1-10.