DOI QR코드

DOI QR Code

Ghosting Artifacts in Digital Radiography

디지털 방사선영상에서 고스팅 아티팩트

  • Jung, Wonhee (Department of Radiological Science, Catholic University of Daegu) ;
  • Chon, Kwonsu (Department of Radiological Science, Catholic University of Daegu)
  • 정원희 (대구가톨릭대학교 방사선학과) ;
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2014.06.30
  • Accepted : 2014.12.25
  • Published : 2014.12.30

Abstract

Because of using computer system in the field of medical radiology, many artifacts which can not be seen in film/screen system are being created, especially ghosting artifacts. This artifacts could be yielded by taking advantage of a flat panel Thin-Film Transistor array detector. Ghosting artifacts can be rarely seen in clinical practice when an image that has a high-contrast object within a region of high exposure is quickly followed by another image that puts the high-contrast ghosting image in an area of lower radiation exposure. In this experiment, the ghosting artifacts were minimized for approximately 3 minutes with the unaided eye and almost disappeared for 6 minutes quantitatively between exposures. Moreover, the artifacts were influenced by more tube voltage than current and those depended not upon the number of readout cycles, but upon time.

방사선 임상 관련 분야에서 컴퓨터의 사용으로 인해 카세트 사용에서는 볼 수 없는 아티팩트가 만들어지고 있다. 고스팅 아티팩트는 평판형 박막 트랜지스터(Flat Panel Thin-Film Transistor) 배열 검출기를 사용할 때 발생될 수 있다. 특히 고선량의 방사선을 고대조도의 물질에 노출시킨 영상을 획득한 후, 바로 저선량의 조사가 이루어진 영상이 획득될 때 고스팅 아티팩트가 발생할 수 있다. 본 실험에서 고스팅 아티팩트가 육안 관찰시 3분에서 사라지는 것을 확인할 수 있었으며 정량적 분석으로는 대략 6분에서 없어지는 것을 확인할 수 있었다. 또한 이 아티팩트는 관전류보다는 관전압의 영향을 더 받는다는 사실과 노출에 의한 포획전하의 방출이 아닌 시간에 의해 포획전하가 소멸된다는 사실을 실험을 통해 검증할 수 있었다.

Keywords

References

  1. Alisa Walz-Flannigan, Dayne Magnuson, Daniel Erickson, Beth Schueler, "Artifacts in Digital Radiography," American Roentgen Ray Society, Vol. 198, No. 1, pp.156-161, 2011.
  2. W. T. Drost, D. J. Reese, W. J. Hornof, "DIGITAL RADIOGRAPHY ARTIFACTS," Veterinary Radiology & Ultrasound, Vol. 49, No.1, pp.S48-S56, 2008. https://doi.org/10.1111/j.1740-8261.2007.00334.x
  3. D. A. Jimenez, L. J. Armbrust, R. T. O'Brien, D. S. Biller, "ARTIFACTS IN DIGITAL RADIOGRAPHY," Veterinary Radiology & Ultrasound, Vol. 49, No. 4, pp.321-332, 2008. https://doi.org/10.1111/j.1740-8261.2008.00374.x
  4. M. B. Williams et. al., "Digital Radiography Image Quality: Image Acquisition," American College of Radiology, Vol. 4, No. 6, pp.371-388, 2007. https://doi.org/10.1016/j.jacr.2007.02.002
  5. R. R. Carlton and A. M. Adler, "Principles of Radiographic Imaging: An Art and a Science," 5th Edition, DELMAR Cengage Learning. The united states of America, pp.353-354, 2013.
  6. E. Kotter, M. Langer, "Digital radiography with large-area flat-panel detectors," European Radiology, Vol. 12, No. 10, pp.2562-2570, 2002. https://doi.org/10.1007/s00330-002-1350-1
  7. Tsutomu Gomi, Kichirou Koshida, Tosiaki Miyati, Jun Miyagawa, and Hiroshi Hirano, "An Experimental Comparison of Flat-Panel Detector Performance for Direct and Indirect Systems (Initial Experiences and Physical Evaluation)," Journal of Digital Imaging, Vol. 19, No. 4, pp.362-370, 2006. https://doi.org/10.1007/s10278-006-0634-4
  8. M.. Korner, C. H. Weber, S. Wirth, K. J. Pfeifer, M. F. Reiser, M. Treitl, "Advances in Digital Radiography: Physical Principles and System Overview," Radiographics, Vol. 27, No. 3, pp.675-686, 2007. https://doi.org/10.1148/rg.273065075
  9. Noor Mail, Peter O'Brien, and Geordi Pang, "Lag correction model and ghosting analysis for an indirect-conversion flat-panel imager," Journal of Applied Clinical Medical Physics, Vol. 8, No. 3, pp.137-146, 2007. https://doi.org/10.1120/jacmp.v8i3.2483
  10. J. H. Siewerdsen and D. A. Jaffray, "A ghost story: Spatio-temporal respons characteristics of an indirect-detection flat-panel imager," American Association of Physicists in Medicine, Vol. 26, No. 8, pp.1624-1641, 1999.
  11. G. Pang, D. L. Lee, and J. A. Rowlands, "Investigation of a direct conversion flat panel imager for portal imaging," American Association of Physicists in Medicine, Vol. 28, No. 10, pp.2121-2128, 2007.
  12. The ministry of food and drug safety, "The Guidelines of Diagnostic Reference Level in Radiography," The ministry of food and drug safety. Korea, 2012.
  13. Nikunj Desai and Daniel J Valentino, "A software tool for quality assurance of computed / digital radiography (CR/DR) systems," SPIE, Vol. 7961, No. Physics of Medical Imaging, pp.796144E, 2011.
  14. J. A. Seibert, J. M. Boone, and K. K. Lindfors, "Flat-field correction technique for digital detectors," SPIE, Vol. 3336, No. Physics of Medical Imaging, pp.348-354, 1998.