DOI QR코드

DOI QR Code

An Experimental Study on the Creep Behavior of Frozen Sand

동결 사질토의 크리프 거동에 관한 실험적 연구

  • Chae, Deokho (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Youngseok (Korea Institute of Construction Technology) ;
  • Lee, Jangguen (Korea Institute of Construction Technology) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2013.11.01
  • Accepted : 2013.12.17
  • Published : 2014.02.01

Abstract

Due to the latitudinal location of Korea, the seasonally frozen ground has been focused on as research topics such as the frost heaving under the asphalt road rather than the permafrost ground. However, the recent construction of the second Korean Antarctic research station, the Jangbogo station and the participation on the development of the natural gas pipeline in Russia arouse the research interests on the behavior of the permafrost ground. At the design process of the geotechnical structures on the permafrost ground, the evaluation of the creep characteristics of the frozen soil is very crucial. Since the domestic specification on the frozen soil testing does not exist currently, it is necessary to evaluate the creep characteristics of frozen soils systematically with regard to the affecting factors. Therefore, the creep characteristics of the frozen specimens of dense Jumoonjin sand were evaluated under various loads at -5 and $-10^{\circ}C$. Based on the test results, as the load became close to the strength and the temperature became lower, the duration of the secondary creep became shorter and more distinct tertiary creep responses were observed.

계절 동토지역으로 분류되는 우리나라의 동토에 관한 연구는 동상압에 의한 아스팔트 도로 등의 기능 저하 방지에 관한 연구가 대부분이었다. 하지만 최근 제 2 남극 기지인 장보고 기지 건설과 러시아 극동지역의 천연파이프 건설 협약 등이 이루어지면서 영구동토지반에서의 구조물 건설에 대한 관심이 증대되고 있다. 영구동토지반에서 구조물 설계 시 지반의 크리프 특성이 매우 중요한 요소로 알려져 있다. 현재 우리나라에서는 동토에 관한 명확한 시험규정이 없으므로 동토에 영향을 미치는 요소를 시험 변수로 활용하여 크리프 거동 특성을 체계적으로 규명하는 것이 필요하다. 따라서 본 연구에서는 $-5^{\circ}C$$-10^{\circ}C$에서 조밀한 주문진 표준사를 동결시켜 하중비율을 조절하여 일정하중 하에서의 크리프 특성을 살펴보았다. 시험 결과, 온도가 더 낮을수록, 하중비율이 더 클수록 2차 크리프 거동이 짧아지고 3차 크리프의 변형이 더욱 뚜렷이 나타나는 경향을 보였다.

Keywords

References

  1. Andersland, O. B. and Ladanyi, B. (2004), Frozen ground engineering second edition, John Wiley & Sons, New York, pp. 20-55.
  2. Anderson, D. M. and N. R. Morgenstern (1973), Physics, chemistry and mechanics of frozen ground, National Academy of Sciences, pp. 257-288.
  3. ASTM (1995). Laboratory determination of creep properties of frozen soil samples by uniaxial compression (D 5520), In 1995 Annual Book of ASTM Standards, Sec. 4, Vol. 04.08. ASTM, Philadelphia: ASTM.
  4. Chae, D. H., Oh, M. Y., Lee, H. Y. and Cho, W. J. (2013), Loading rate effects on the stress-strain responses of frozen soils, Proceedings of International Society of Offshore and Polar Engineering (ISOPE), Anchorage, pp. 501-506.
  5. Choi, C. H. and Ko, S. G. (2011), A study for predicting adfreeze bond strength from shear strength of frozen soil, Journal of the Korean Geotechnical society, Vol. 27, No. 10, pp. 13-23 (in Korean). https://doi.org/10.7843/kgs.2011.27.10.013
  6. Freitag, D. R. and McFadden, T. (1997), Introduction to cold regions engineering, New York, ASCE Press, pp. 291-301.
  7. Hivon, E. G. and Sego, D. C. (1995), Strength of frozen saline soils, Canadian Geotechnical Journal, Vol. 32, No. 2, pp. 336-354. https://doi.org/10.1139/t95-034
  8. Hong, C. H., Kim, T. H. and Bae, G. J. (2010), A study on application methods of satellite images for the construction projects over extreme cold regions, Journal of The Korean Association of Geographic Information Studies, Vol. 13, No. 4, pp. 148-156 (in Korean).
  9. Hong, S. S., Kim, Y. S., Lee, J. G., Kang, J. M., Kim, H. S. and Bae, K. J. (2010), A Characteristics of the unfrozen water content in antarctic soils, Proceedings of Korean Geo-Environmental Society, Seoul, pp. 568-573 (in Korean).
  10. John M. Ting. (1983), Tertiary creep model for frozen sands, Journal of Geotechnical Engineering, Vol. 109, No. 7, pp. 932-945. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:7(932)
  11. Kim, H. S., You, K. H., Cho, G. T. and Kim, N. S. (2007), Laboratory characteristics on frost heave in highway subgrade, Journal of Korean Geotechnical Society, Vol. 27, No. 2, pp. 199-205 (in Korean).
  12. Ko, S. G., Choi, C. H. and Chae, J. G. (2010), Foundation design parameters in cold regions, Geo-Environmental and Slope Stability Conference, pp. 93-101 (in Korean).
  13. Ladanyi, B. (1981), Mechanical behaviour of frozen soils, In Proc. Int. Symp. on Mechanical Behavior of Structured Media, Calreton Univ., Ottawa. New York, Vol. B, pp. 205-245.
  14. Ladanyi, B. (1983), Shallow foundation on frozen soil, Journal of Geotechnical Engineering, Vol. 109, No. 11, pp. 1434-1448. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:11(1434)
  15. Landanyi, B. and Arteau, J. (1978), Effect of specimen shape on creep response of a frozen sand, International Symposium on Ground Freezing, pp. 141-153.
  16. Lee D. U. and Yun J. M. (2012), Recycling plan for waste concrete fine aggregate as materials of anti-frost layer and sub-base layer, Journal of Korean Geosynthetics Society, Vol. 11, No. 3, pp. 19-25 (in Korean). https://doi.org/10.12814/jkgss.2012.11.3.019
  17. Loch, J. P. G. (1981), State of the art report - frost action in soils, Engineering Geology, Vol. 18, No. 1-4, pp. 213-224. https://doi.org/10.1016/0013-7952(81)90061-2
  18. Nixon, J. F. (1990), Effect of climatic warming on pile creep in permafrost, Journal of Cold Regions Engineering, Vol. 4, No. 1, pp. 67-73. https://doi.org/10.1061/(ASCE)0887-381X(1990)4:1(67)
  19. Obermeier, S. F. (1973), Frost heave susceptibility research, OECD Symposium, Frost Action on Roads, I, Paris. pp. 257-66.
  20. Oura, H., Usuki, H. and Takada, Y. (1960), On adfreezing force of soil, Low Temperature Science. pp. 215-223.
  21. Parameswaran, V. R. (1978), Adfreeze strength of frozen sand to model piles, Canadian Geotechnical Journal, Vol. 15, No. 4, pp. 494-500. https://doi.org/10.1139/t78-053
  22. Parameswaran. V. R. (1979), Creep of model piles in frozen soil, Canadian Geotechnical Journal, Vol. 16, No. 1, pp. 69-77. https://doi.org/10.1139/t79-007
  23. Park, J. J., Shin, E. C. and Kang, J. G. (2009), Thermal stability in underground structure with ground freezing, Journal of Korean Geotechnical Society, Vol. 25, No. 3. pp. 65-74 (in Korean).
  24. Patterson, D. E. and Smith, M. W. (1980), The measurement of unfrozen content by time domain reflectometry, Canadian Geotechnical Journal, Vol. 18, No. 1, pp. 131-144.
  25. Saetersdal, R. (1981), Heaving conditions by freezing of soils, Engineering Geology, Vol. 18. No. 1-4, pp. 291-305. https://doi.org/10.1016/0013-7952(81)90068-5
  26. Shin, E. C., Park, J. J. and Lee, C. S. (2002), The characteristics of frost heaving pressure on the railroad bed materials, Journal of Korean Society for Railway Conference, pp. 264-270 (in Korean).
  27. Topp, G. C., Davis, J. L. and Annan, A. P. (1980), Electromagnetic determination of soil water content : measurements on coaxial transmission line, Water Resources Research, Vol. 16, No. 3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  28. U. S. Army and Air force (1983), Artic and subarctic construction foundation for structures, Department of The Army and The Air Force, pp. 1-7.
  29. Wijeweera and Joshi, R. C. (1993), Creep behavior of saline fine-grained frozen soil, Journal of Cold Regions Engineering, Vol. 7, No. 3, pp. 77-89. https://doi.org/10.1061/(ASCE)0887-381X(1993)7:3(77)

Cited by

  1. 동적 콘 관입기를 이용한 활동층 심도평가 vol.17, pp.1, 2016, https://doi.org/10.14481/jkges.2016.17.1.49
  2. 포화도와 실트 함량에 따른 동결토의 부동 수분량 및 일축압축강도 특성 vol.32, pp.12, 2016, https://doi.org/10.7843/kgs.2016.32.12.59
  3. 직접전단상자 시스템에 따른 동결토의 강도 평가에 관한 실험적 연구 vol.18, pp.3, 2014, https://doi.org/10.14481/jkges.2017.18.3.5