DOI QR코드

DOI QR Code

Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments

  • Kim, Geug-Tae (Department of Chemical Engineering, Hannam University) ;
  • Kwon, Moo Hyun (Department of Applied Chemistry, Woosuk University)
  • Received : 2013.11.16
  • Accepted : 2014.01.02
  • Published : 2014.02.01

Abstract

The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form $1g_0$ down to $1.0{\times}10^{-4}g_0$, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than $1g_0$, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of $1g_0$.

Keywords

References

  1. Choubey, A., Veeramani, P., Pym, A. T. G., Mullins, J. T., Sellin, P. J., Brinkman, A. W., Radley, I., Basu, A. and Tanner, B. K., "Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te," J. Cryst. Growth, 352, 120-123(2012). https://doi.org/10.1016/j.jcrysgro.2012.03.005
  2. Shi, Y., Yang, J. F., Liu, H., Dai, P., Liu, B., Jin, Z., Qiao, G. and Li, H., "Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique," J. Cryst. Growth, 349, 68-74(2012). https://doi.org/10.1016/j.jcrysgro.2012.03.055
  3. Zotov, N., Baumann, S., Meulenberg, W. A. and VaBen, R., "La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition," J. Membr. Sci., 442, 119-123(2013). https://doi.org/10.1016/j.memsci.2013.04.016
  4. Fanton, M. A., Li, Q., Polyakov, A. Y., Skowronski, M., Cavalero, R. and Ray, R., "Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results," J. Cryst. Growth, 287, 339-343(2006). https://doi.org/10.1016/j.jcrysgro.2005.11.022
  5. Su, C. H., George, M. A., Palosz, W., Feth, S. and Lehoczky, S. L., "Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport," J. Cryst. Growth, 213, 267-275(2000). https://doi.org/10.1016/S0022-0248(00)00385-7
  6. Paorici, C., Razzetti, C., Zha, M., Zanotti, L., Carotenuto, L. and Ceglia, M., "Physical Vapour Transport of Urotropine: One-Dimensional Model," Mater. Chem. Phys., 66, 132-137(2000). https://doi.org/10.1016/S0254-0584(00)00312-6
  7. Lee, Y. K. and Kim, G. T., "Effects of Convection on Physical Vapor Transport of $Hg_2Cl_2$ in the Presence of Kr- Part I: Under Microgravity Environments," J. Korean Crystal Growth and Crystal Tech., 23, 20-26(2013). https://doi.org/10.6111/JKCGCT.2013.23.1.020
  8. Greenwell, D. W., Markham, B. L. and Rosenberger, F., "Numerical Modeling of Diffusive Physical Vapor Transport in Cylindrical Ampoules," J. Cryst. Growth, 51, 413-425(1981). https://doi.org/10.1016/0022-0248(81)90418-8
  9. Markham, B. L., Greenwell, D. W. and Rosenberger, F., "Numerical Modeling of Diffusive-Convective Physical Vapor Transport in Cylindrical Vertical Ampoules," J. Cryst. Growth, 51, 426-437 (1981). https://doi.org/10.1016/0022-0248(81)90419-X
  10. Jhaveri, B. S. and Rosenberger, F., "Expansive Convection in Vapor Transport across Horizontal Enclosures," J. Cryst. Growth, 57, 57-64(1982). https://doi.org/10.1016/0022-0248(82)90248-2
  11. Markham, B. L. and Rosenberger, F., "Diffusive-Convective Vapor Transport across Horizontal and Inclined Rectangular Enclosures," J. Cryst. Growth, 67, 241-254(1984). https://doi.org/10.1016/0022-0248(84)90184-2
  12. Nadarajah, A., Rosenberger, F. and Alexander, J., "Effects of Buoyancy-Driven Flow and Thermal Boundary Conditions on Physical Vapor Transport," J. Cryst. Growth, 118, 49-59(1992). https://doi.org/10.1016/0022-0248(92)90048-N
  13. Zhou, H., Zebib, A., Trivedi, S. and Duval, W. M. B., "Physical Vapor Transport of Zinc-Telluride by Dissociative Sublimation," J. Cryst. Growth, 167, 534-542(1996). https://doi.org/10.1016/0022-0248(96)00305-3
  14. Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-I: Thermal Convection," J. Mater. Proc. Manufacturing Sci., 1, 83-104(1992).
  15. Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-II: Thermosolutal Convection," J. Mater. Proc. Manufacturing Sci., 1, 295-313(1993).
  16. Duval, W. M. B., Glicksman, N. E. and Singh, B., "Physical Vapor Transport of Mercurous Chloride Crystals; Design of a Microgravity Experiment," J. Cryst. Growth, 174, 120-129(1997). https://doi.org/10.1016/S0022-0248(96)01088-3
  17. Tebbe, P. A., Loyalka, S. K. and Duval, W. M. B., "Finite Element Modeling of Asymmetric and Transient Flow Fields during Physical Vapor Transport," Finite Elements in Analysis and Design, 40, 1499-1519(2004). https://doi.org/10.1016/j.finel.2003.09.003
  18. Kim, G. T., Duval, W. M. B., Singh, N. B. and Glickman, M. E., "Thermal Convective Effects on Physical Vapor Transport Growth of Mercurous Chloride Crystals ($Hg_2C1_2$) for Axisymmetric 2-D Cylindrical Enclosure," Model. Simul. Mater. Sci. Eng., 3, 331-357(1995). https://doi.org/10.1088/0965-0393/3/3/004
  19. Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Thermal Convection in Physical Vapour Transport of Mercurous Chloride ($Hg_2C1_2$) for Rectangular Enclosures," Model. Simul. Mater. Sci. Eng., 5, 289-309(1997). https://doi.org/10.1088/0965-0393/5/3/007
  20. Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Effects of Asymmetric Temperature Profiles on Thermal Convection during Physical Vapor Transport of $Hg_2C1_2$," Chem. Eng. Comm., 162, 45-61 (1997). https://doi.org/10.1080/00986449708936631
  21. Rosenberger, F. and Muller, G., "Interfacial Transport in Crystal Growth, a Parameter Comparison of Convective Effects," J. Cryst. Growth, 65, 91-104(1983). https://doi.org/10.1016/0022-0248(83)90043-X

Cited by

  1. Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO vol.26, pp.6, 2015, https://doi.org/10.14478/ace.2015.1112
  2. Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1028
  3. Preliminary Studies on Double-Diffusive Natural Convection During Physical Vapor Transport Crystal Growth of Hg2Br2 for the Spaceflight Experiments vol.57, pp.2, 2019, https://doi.org/10.9713/kcer.2019.57.2.289
  4. Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2 vol.30, pp.3, 2014, https://doi.org/10.6111/jkcgct.2020.30.3.117