DOI QR코드

DOI QR Code

Perchlorate Removal by River Microorganisms in Industrial Complexes

산업단지지역 하천 미생물에 의한 퍼클로레이트 제거

  • Jo, Kang-Ick (Department of Environmental Engineering, Dong-A University) ;
  • Ahn, Yeonghee (Department of Environmental Engineering, Dong-A University)
  • 조강익 (동아대학교 환경공학과) ;
  • 안영희 (동아대학교 환경공학과)
  • Received : 2013.09.03
  • Accepted : 2013.10.10
  • Published : 2014.02.01

Abstract

Perchlorate ($ClO_4^-$) is an emerging contaminant of soil/groundwater and surface water. $ClO_4^-$ has been shown to inhibit iodide uptake into the thyroid gland and cause a reduction in thyroid hormone production. $ClO_4^-$ is highly soluble and very stable in water. Biodegradation by $ClO_4^-$-reducing bacteria (PRB) is considered the most important factor in natural attenuation of $ClO_4^-$. Rivers in an industrial complex have potential to be contaminated with $ClO_4^-$ discharged from point or non-point sources. In this study, water samples were taken from the rivers running through the Gumi industrial complexes and used for batch test to analyze $ClO_4^-$-degradation potential of river microorganisms. The results of 83-h batch culture showed that $ClO_4^-$-removal efficiency of all samples was 0.77% or less without addition of an external electron ($e^-$) donor. However $ClO_4^-$-removal efficiency was higher when an $e^-$ donor (acetate, thiosulfate, $S^0$, or $F^0$) was added into the batch culture, showing up to 100% removal efficiency. The removal efficiency was various depending on type of $e^-$ donor and site of sampling. When acetate was used as an $e^-$ donor, the highest $ClO_4^-$-removal efficiency was observed among the $e^-$ donors used in this study, suggesting that activity of heterotrophic PRB was dominant. The results of this study provide basic information on natural attenuation of $ClO_4^-$ by river microorganisms. The information can be useful to prepare a strategy to enhance efficiency of $ClO_4^-$ biodegradation for in situ bioremediation.

퍼클로레이트($ClO_4^-$)는 지표수는 물론이고 토양지하수의 신규 오염물이다. $ClO_4^-$는 요오드가 갑상선에 흡수되는 것을 방해하므로 갑상선 호르몬 생성을 저하시킨다. $ClO_4^-$는 물에서 매우 용해도가 높고 안정적이라는 특징으로 인해 $ClO_4^-$를 환원하는 세균(PRB)에 의한 생분해가 자연저감의 가장 중요한 요인으로 여겨지고 있다. 산업단지 내 하천은 점 또는 비점오염원으로부터 배출된 $ClO_4^-$에 오염될 잠재성이 있다. 그래서 본 연구에서는 구미지역 산업단지 내 하천에서 물시료를 채취하여 하천미생물의 $ClO_4^-$ 분해 잠재능을 회분배양으로 조사하였다. 외부 전자공여체를 첨가하지 않고 83시간 동안 배양한 결과 모든 시료는 $ClO_4^-$ 제거효율이 0.77% 이하로 매우 낮은 것으로 나타났다. 그러나 외부 전자공여체(acetate, thiosulfate, $S^0$, 또는 $F^0$)를 첨가한 경우는 제거효율이 최고 100%로 나타났고, 첨가된 전자공여체의 종류와 시료채취지점에 따라 제거효율은 다양한 것으로 나타났다. 본 연구에서 사용한 전자공여체 중에서는 acetate를 사용했을 때 $ClO_4^-$분해효율이 가장 우수한 것으로 나타나 종속영양방식 PRB의 활성이 우세함을 알 수 있었다. 본 연구의 결과는 산업단지 내 하천 미생물에 의한 $ClO_4^-$ 자연저감에 대한 기초정보를 제공하여 원위치 생물복원처리에서 $ClO_4^-$ 생분해를 증진하기 위한 전략마련에 유용하게 사용될 것이다.

Keywords

References

  1. Motzer, W. E., "Perchlorate: Problems, Detection, and Solutions," Environ. Forensics, 2, 301-311(2001). https://doi.org/10.1006/enfo.2001.0059
  2. National Research Council, "Health Implications of Perchlorate Ingestion. National Academy of Sciences," Washington, D.C., USA(2005).
  3. Shin, K.-H., Son, A., Cha, D. K. and Kim, K.-W., "Review on Risks of Perchlorate and Treatment Technologies," J. Kor. Soc. Environ. Eng., 29, 1060-1068(2007).
  4. Republic of Korea Ministry of Environment, "Guideline for the management of Drinking Water Quality Monitoring Items," Korea (2010).
  5. Coates, J. D. and Achenbach, L. A., "Microbial Perchlorate Reduction: Rocket-fuelled Metabolism," Nat. Rev. Microbiol., 2, 569-580(2004). https://doi.org/10.1038/nrmicro926
  6. Kim, H., Kim, J. and Lee, Y., "Occurrence of Perchlorate in Drinking Water in Korea," J. Kor. Soc. Water Quality, 23, 822-828(2007).
  7. Kim, H. B., Oh, J. E., Lee, S. Y. and Cho, J. W., "The Analysis of Perchlorate in Nakdong River and Tap Water," J. KSEE, 27(8), 776-781(2008).
  8. Her, N., Jeong, H., Kim, J. and Yoon, Y., "Occurrence of Perchlorate in Drinking Water and Seawater in South Korea," Arch. Environ. Contam. Toxicol., 61, 166-172(2011). https://doi.org/10.1007/s00244-010-9616-0
  9. Lee, J. W., Oh, S.-H. and Oh, J.-E., "Monitoring of Perchlorate in Diverse Foods and Its Estimated Dietary Exposure for Korea Populations," J. Hazard. Mater., 243, 52-58(2012). https://doi.org/10.1016/j.jhazmat.2012.09.037
  10. Son, H. J. and Jung, C. W., "Detection of Perchlorate in Nakdong River and Removal Characteristics of Perchlorate by Granular Activated Carbon Process," J. KSEE, 29(4), 438-443(2007).
  11. Kim, H. K., Kim, J. H., Lee, F. H., Lee, J. H. and Kim, S., "Perchlorate in Advanced Drinking Water Treatment Process," J. Korean Soc. Water Qual., 24(2), 164-168(2008).
  12. Han, K.-R. and Ahn, Y., "Characterization of Perchlorate-removal Using Elemental Sulfur Granules and Activated Sludge," J. Life Sci., 23(5), 676-681(2013). https://doi.org/10.5352/JLS.2013.23.5.676
  13. Lee, B., Lee, S. D. and Choo, K.-H., "The Removal of Perchlorate Using Amine-functionalized Mesoporous Anion-exchange Resins with Different Number of Ligands," Korean J. Chem. Eng., 30(4), 898-905(2013). https://doi.org/10.1007/s11814-012-0180-3
  14. Cost & Performance report ESTCP Project (ER-0219), "Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate-Impacted Groundwater at Longhorn Army Ammunitions Plant," Environmental Security Technology Certification Program, U.S. Department of Defense(2010).
  15. Bardiya, N. and Bae, J. H., "Dissimilatory Perchlorate Reduction: A Review," Microbiol Res., 166(4), 237-254(2011). https://doi.org/10.1016/j.micres.2010.11.005
  16. Ahn, Y. and Ha, M. G., "Autotrophic Perchlorate Removal Using Zero-valent Iron and Activated Sludge: Batch Test," J. Life Sci., 21, 444-450(2011). https://doi.org/10.5352/JLS.2011.21.3.444
  17. Republic of Korea Ministry of Environment, "Standard method for water," Korea(2008).
  18. U.S. EPA., "EPA Method 314.0: Determination of Perchlorate in Drinking Water Using Ion Chromatography," U.S.(1999).
  19. Ahn, Y., Jung, H., Tatavarty, R., Choi, H., Yang, J. W. and Kim, I. S., "Monitoring of Petroleum Hydrocarbon Degradative Potential of Indigenous Microorganisms in Ozonated Soil," Biodegradation, 16, 45-56(2005). https://doi.org/10.1007/s10531-004-0428-2
  20. Okeke, B. C., Giblin, T. and Frankenberger Jr., W. T., "Reduction of Perchlorate and Nitrate by Salt Tolerant Bacteria," Environ. Poll., 118, 357-363(2002). https://doi.org/10.1016/S0269-7491(01)00288-3
  21. Logan, B. E., Wu, J. and Unz, R. F., "Biological Perchlorate Reduction in High-salinity Solutions," Wat. Res., 35, 3034-3038 (2001). https://doi.org/10.1016/S0043-1354(01)00013-6
  22. Greenwood, N. N. and Earnshaw, A., Chemistry of the Elements, 2nd Ed., Butterworth-Heinemann, Oxford, U.K.(1997).
  23. Coates, J. D., Michaelidou, U., Bruce, R. A., O'Connor, S. M., Crespi, J. N. and Achenbach, L. A., "Ubiquity and Diversity of Dissimilatory (per)chlorate-reducing Bacteria," Appl. Environ. Microbiol., 65, 5234-5241(1999).
  24. Shrout, J. D., Scheetz, T. E., Casavant, T. L. and Parkin, G. F., "Isolation and Characterization of Autotrophic, Hydrogen-utilizing, Perchlorate-reducing Bacteria," Appl. Microbiol. Biotechnol., 67, 261-268(2005). https://doi.org/10.1007/s00253-004-1725-0

Cited by

  1. Study on the Repaired Method of Black-Odor River and Its Application vol.4, pp.5, 2015, https://doi.org/10.12677/jwrr.2015.45057