DOI QR코드

DOI QR Code

A Field Study on Electrokinetic Removal of Salts from Greenhouse Soil

전기동력학 기술을 이용한 시설재배지 토양 염류제거 실증 연구

  • Lee, You-Jin (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Choi, Jeong-Hee (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Sim, Seong-Ju (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Ha, Tae-Hyun (Electric Propulsion Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Hyun-Goo (Electric Propulsion Research Center, Korea Electrotechnology Research Institute)
  • 이유진 (한국전기연구원 전지연구센터) ;
  • 최정희 (한국전기연구원 전지연구센터) ;
  • 심성주 (한국전기연구원 전지연구센터) ;
  • 하태현 (한국전기연구원 전기추진연구센터) ;
  • 이현구 (한국전기연구원 전기추진연구센터)
  • Received : 2013.09.02
  • Accepted : 2013.10.29
  • Published : 2014.02.01

Abstract

A pilot-scale electrokinetic (EK) separation field test ($2{\times}3{\times}0.2m^3$, $W{\times}L{\times}D$) was performed in a greenhouse to remove salts from saline soil. Initially, the greenhouse soil had high electrical conductivity (EC), about 9 dS/m, and contained mainly $Ca^{2+}$, $Cl^-$ and $SO_4^{2-}$ ions. After 2 weeks of EK treatment, the soil EC was reduced to 52% compared with its initial value. The EC reduction was mostly achieved within the first week (47%) due to removal of $Na^+$ and $Cl^-$ ions, but ions with a high adsorption capacity such as $Ca^{2+}$ and $SO_4^{2-}$ ions were difficult to be removed. During the EK test, the soil temperature increased and it reached around $50^{\circ}C$ at some regions. For in situ application to soils in cultivation, the current should be controlled to limit increases in temperature, especially near the cathodes. In conclusion, the in situ EK technique is feasible for the restoration of saline greenhouse soils in or no cultivation and an appropriate strategy is necessary for more effective remediation.

본 연구에서는 높은 농도의 염류가 집적된 시설재배지 토양의 제염을 위해 전기동력학적(EK) 기술을 적용한 파일럿 규모($2{\times}3{\times}0.2m^3$, $W{\times}L{\times}D$)의 실증시험을 실시하였다. 실험 전 토양의 전기전도도(EC)는 약 9 dS/m였으며, 토양내 주요 염류는 $Ca^{2+}$, $Cl^-$, $SO_4^{2-}$ 이온이었다. 2주간의 EK 처리 후 토양의 EC는 실험 전에 비해서 52% 감소하였으며, 이 중 대부분은 초기 1주일 이내에 제거되었다(47%). 이는 주로 $Na^+$$Cl^-$의 제거에 의한 것으로 보이며, 주요 염류 이자 토양에 대해 높은 흡착능을 가지는 $Ca^{2+}$$SO_4^{2-}$이온은 상대적으로 제거율이 낮았다. EK 실험이 진행되는 동안 토양의 온도는 전류의 세기에 따라 증가하여 최대 $50^{\circ}C$까지 증가하였다. 따라서 작물이 재배 중인 토양의 원위치 EK 적용을 위해서는 토양의 온도 상승을 제한하기 위해 전류를 조절할 필요가 있다. 결론적으로 EK 기술을 이용하여 경작 중이거나 휴경 중인 시설재배지 토양의 원위치 염류 제거가 가능할 것으로 판단되며 효율적인 탈염을 위해서는 적절한 운전 전략이 요구된다.

Keywords

References

  1. Lee, S. B., Lee, C. H., Hong, C. O., Kim, S. Y., Lee, Y. B. and Kim, P. J., "Effect of Organic Residue Incorporation on Salt Activity in Greenhouse Soil," Korean J. Environ. Agric., 28, 397 (2009). https://doi.org/10.5338/KJEA.2009.28.4.397
  2. Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P. and Balasubramanian, T., "Restoration of Saline Land by Halophytes for Indian Soils," Soil Biol. Biochem., 39, 2661(2007). https://doi.org/10.1016/j.soilbio.2007.02.005
  3. Acar, Y. B. and Alshawabkeh, A. N., "Principles of Electrokinetic Remediation," Environ. Sci. Technol., 27, 2638(1993). https://doi.org/10.1021/es00049a002
  4. Probstein, R. F. and Hicks, R. E., "Removal of Contaminants from Soils by Electric Fields," Science, 260, 498(1993). https://doi.org/10.1126/science.260.5107.498
  5. Shi, S., Cho, S. H., Lee, Y. H., Yun, S. H., Woo, J. J. and Moon, S. H., "Desalination of Fish Meat Extract by Electrodialysis and Characterization of Membrane Fouling," Korean J. Chem. Eng., 28, 575(2011). https://doi.org/10.1007/s11814-010-0375-4
  6. Cho, J. M., Kim, K. J., Chung, K. Y., Hyun, S. and Baek, K., "Restoration of Saline Soil in Cultivated Land Using Electrokinetic Process," Sep. Sci. Technol., 44, 2371(2009). https://doi.org/10.1080/01496390902983729
  7. Cho, J. M., Park, S. Y. and Baek, K., "Electrokinetic Restoration of Saline Agricultural Lands," J. Appl. Electrochem., 40, 1085(2010). https://doi.org/10.1007/s10800-010-0072-3
  8. Choi, J. H., Maruthamuthu, S., Lee, H. G., Ha, T. H. and Bae, J. H., "Nitrate Removal by Electro-bioremediation Technology in Korean Soil," J. Hazard. Mater., 168, 1208(2009). https://doi.org/10.1016/j.jhazmat.2009.02.162
  9. Jayasekera, S. and Hall, S., "Modification of the Properties of Salt Affected Soils Using Electrochemical Treatments," Geotech. Geol. Eng., 25, 1(2007). https://doi.org/10.1007/s10706-006-0001-8
  10. Lee, Y. J., Choi, J. H., Lee, H. G., Ha, T. H. and Bae, J. H., "Pilot-scale Study on in situ Electrokinetic Removal of Nitrate from Greenhouse Soil," Sep. Purif. Technol., 79, 254(2011). https://doi.org/10.1016/j.seppur.2011.02.011
  11. Xu, H., Chen, W., Wang, C., Chen, B. and Yang, J., "An Enhanced Electrokinetic Remediation of Saline Lands by Sludge Layer," J. Food Agric. Environ., 10, 709(2012).
  12. Choi, J. H., Lee, Y. J., Lee, H. G. and Ha, T. H., Bae, J. H., "Removal Characteristics of Salts of Greenhouse in Field Test by in situ Electrokientic Process," Electrochim. Acta, 56, 63(2012).
  13. Lee, Y. J., Choi, J. H., Lee, H. G. and Ha, T. H., "Electrokinetic Remediation of Saline Soil Using Pulse Power," Environ. Eng. Sci., 30, 133-141(2013). https://doi.org/10.1089/ees.2012.0118
  14. Cardon, G. E., Davis, J. G., Bauder, T. A. and Waskom, R. M., "Managing Saline Soils," Colorado State University Extension (2011). Available at: http://www.ext.colostate.edu/pubs/crops/ 00503.html.
  15. Luo, Q., Zhang, X., Wang, H. and Qian, Y., "Mobilization of Phenol and Dichlorophenol in Unsaturated Soils by Non-uniform Electrokinetics," Chemosphere, 59, 1289(2005). https://doi.org/10.1016/j.chemosphere.2004.11.043