DOI QR코드

DOI QR Code

Evaluation on Fatigue Performance in Compression of Normaland Light-weight Concrete Mixtures with High Volume SCM

혼화재를 다량 치환한 경량 및 보통중량 콘크리트의 압축피로 특성 평가

  • Mun, Jae-Sung (Department of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Department of Plant.Architectural Engineering, Kyonggi University)
  • 문재성 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2014.12.20
  • Accepted : 2014.12.25
  • Published : 2014.12.30

Abstract

The objective of this study is to examine the fatigue behavior in compression of normal-weight and lightweight concrete mixtures with high volume supplementary cementitious material(SCM). The selected binder composition was 30% ordinary portland cement, 20% fly-ash, and 50% ground granulated blast-furnace slag. The targeted compressive strength of concrete was 40 MPa. For the cyclic loading, the constant maximum stress level varied to be 75%, 80%, and 90% of the static uniaxial compressive strength, whereas the constant minimum stress level was fixed at 10% of the static strength. The test results showed that fatigue life of high volume SCM lightweight concrete was lower than the companion normalweight concrete. The value of the fatigue strain at the maximum stress level intersected the descending branch of the monotonic stress-strain curve after approximately 90% of the fatigue life.

이 연구의 목적은 혼화재 다량 치환 경량 및 보통중량 콘크리트의 압축 피로 특성 평가이다. 사용된 결합재는 시멘트 30%, 플라이애쉬 20%, 고로슬래그 50%이다. 콘크리트의 설계 압축강도는 40MPa 이다. 반복하중은 최대 응력비가 정적 콘크리트 압축강도의 75%, 80% 및 90%와 최소 응력비가 정적 강도의 10% 범위에서 1Hz의 속도로 가력하였다. 실험결과 혼화재 다량 치환 경량콘크리트의 피로수명은 혼화재 다량치환 보통중량 콘크리트에 비해 다소 낮았다. 최대응력에서의 피로변형률 값은 피로수명의 약 90% 이후부터 정정 응력-변형률 곡선의 하강부와 교차하였다.

Keywords

References

  1. ACI Committee 215.R-92.(1997), Considerations for Design of Concrete Structures Subjected to Fatigue Loading (Reapproved 1997), ACI Manual of Concrete, 24.
  2. Duxson P, Fernandez-Jimanez, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. (2007). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  3. Korea Industrial Standard. (2006). Koean Strandards Information Center.
  4. Lee, M. K., and Barr, B. I. G.(2004) An overview of the fatigue behavior of plain and fibre reinforced concrete, Cement and Concrete Composites, 26, 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7
  5. Maekawa K, Okamura H. (1983). The deformational behavior and constitutive equation of concrete using the elastoplastic and fracture model. Journal of Faculty Engineering, University of Tokyo, 37(2), 253-328.
  6. Neville AM. (1995). Properties of concrete, Longman, England.
  7. Pacheco-Torgal F, Castro-Gomes J, Jalali, S. (2008). Alkaliactivated binders: a r eview. Construction and Building Materials, 22(7), 1305-1322. https://doi.org/10.1016/j.conbuildmat.2007.10.015
  8. Shi C, Krivenko PV, Roy D. (2006). Alkali-activated cements and concretes. Taylor and Francis.
  9. Sparks, P.R. and Menzies, J.B. (1973). The effect of the rate of loading upon the static and fatigue strengths of plain concrete in compression. Magazine of Concrete Research, 75(83), 73-80.
  10. Tepfers, R., and Kutti, T. (1979). "Fatigue Strength of Plain, Ordinary, and Lightweight Concrete," ACI Journal Proceedings 76(5), 635-652.