DOI QR코드

DOI QR Code

Funds of Knowledge and Features of Teaching and Learning in the Hybrid Space of Middle School Science Class: Focus on 7th grade Biology

과학 수업의 혼성공간에서 드러나는 중학생의 지식자본 및 교수학습 특성: 7학년 생명 영역을 중심으로

  • Received : 2014.09.22
  • Accepted : 2014.11.20
  • Published : 2014.12.31

Abstract

Extracting students' own culture and resources as main sources in science class, we begin a research to explore teaching and learning settings that are more responsive to adolescents. This study has been designed to explore the funds of knowledge that students bring into middle school science class. It also focused on the features of teaching and learning settings that stimulated the autonomous inflow of students' funds of knowledge as resources of science learning. Data from participant observations and in-depth interviews with 7th grade students were qualitatively analyzed based on grounded theory. We found that students' funds of knowledge were formed from their family life, neighbor communities, peer group, and pop culture. The funds of knowledge based on peer culture emerged as the most salient factor of students' enhanced participation and utterance. Common features of classes that stimulated the inflow of funds of knowledge were analyzed to be: (1) hybrid spaces for learning designed in advance: (2) sharing and enlargement of the funds of knowledge that has been brought into the class: and (3) common orientation of the community of practice for knowledge co-construction and shared outcomes. From these findings, this paper discussed the educational implications for promoting students' potential resources to actual sources of science class. It also discussed students' development of participation specifically among the generally marginalized students. Science classes based on the funds of knowledge of students offer an increased possibility of knowledge co-construction through the hybridized interactions of student's everyday lives and science knowledge and lead to more meaningful learning experiences.

학습자가 가진 문화와 자원을 수업의 중심 자원으로 이끌어내고자 하는 노력은, 학습자에게 보다 호응할 수 있는 교수학습을 모색하는 연구자들에게 중요한 단초를 제공할 수 있다. 본 연구에서는 과학수업의 혼성적 공간에서 학습자들이 드러내는 지식자본으로는 어떤 것이 있는지 살펴보고, 이같은 지식자본이 자발적 과정을 통해 수업 상황으로 유입되고, 수업의 핵심적 자원으로 작용하려면 어떠한 교수적 지원이 뒷받침되어야 하는지 알아보고자 하였다. 이를 위하여 7학년 '주변의 생물', '식물과 영양' 단원에서의 실제 수업 상황에서 5개월에 걸친 참여관찰을 수행하였고, 학습자의 지식자본이 가장 활발하게 부상하는 수업을 추출하였으며, 근거이론에 기반한 지속적 비교분석법을 이용하여 수집된 자료를 범주화 하였다. 연구 결과, 학생의 지식자본은 가정, 지역공동체, 또래문화, 대중문화 등의 4가지 기반에서 근거한 것으로 범주화할 수 있었으며, 특히 또래문화와 관련된 지식자본이 학습자의 보다 활발한 발화 및 참여를 촉진하는 것으로 드러났다. 또 이와 같은 지식자본이 수업 상황으로 보다 적극적으로 유입되기 위해서는 혼성적 수업 환경의 제공과 더불어 유입된 지식자본의 보편성, 지식자본의 공유와 확장, 그리고 지식의 공동 구성 및 공유라고 하는 실행공동체의 지향이 필요함을 알 수 있었다. 본 연구에서는 이 같은 교수학습적 특성에 기반하여, 학습자가 가진 '잠재적 수업자원'으로서의 지식자본을 어떻게 '실질적인 수업의 자원'으로 끌어올릴 수 있을 것인지에 대한 교육적 함의를 제시하였다. 학습자의 지식자본을 기반으로 한 수업은 전통적인 수업에서 점점 소외되고 있는 다양한 비참여자들을 포함하여 학습자들을 보다 적극적으로 수업으로 초대할 수 있는 발판이 되어준다. 또한 학습자의 삶에서 비롯된 경험과 과학 지식의 혼성적 상호작용을 통하여 지식의 공동 구성을 가능하게 하며, 보다 유의미한 학습 경험으로 자리 잡을 수 있게 한다는 데 그 의의가 있다.

Keywords

References

  1. Barton, A. C. (2001). Science education in urban settings: Seeking new ways of praxis through critical ethnography. Journal of Research in Science Teaching, 38(8), 899-917. https://doi.org/10.1002/tea.1038
  2. Barton, A. C., Tan, E., & Rivet, A. (2008). Creating hybrid spaces for engaging school science among urban middle school girls. American Educational Research Journal, 45(1), 68-103. https://doi.org/10.3102/0002831207308641
  3. Barton, A. C., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. Journal of Research in Science Teaching, 46(1), 50-73. https://doi.org/10.1002/tea.20269
  4. Basu, S. J., & Barton, A. C. (2007). Developing a sustained interest in science among urban minority youth. Journal of Research in Science Teaching, 44(3), 466-489. https://doi.org/10.1002/tea.20143
  5. Byun, C. S., & Kim, H. B. (2010). The effects of student-centered instruction using analogy for middle school students' learning of the photosynthesis concept. Journal of the Korean Association for Research in Science Education, 30(2), 304-322.
  6. Buxton, C. (2006). Creating contextually authentic science in a "low-performing" urban elementary school. Journal of Research in Science Teaching, 43(7), 695-721. https://doi.org/10.1002/tea.20105
  7. Cowie, B., Jones, A., & Otrel-Cass, A. (2011). Re-engaging students in science: Issues of assessment, funds of knowledge and sites for learning. International Journal of Science and Mathematics Education(2011), 9(2), 347-366. https://doi.org/10.1007/s10763-010-9229-0
  8. Daspit, T. (1999). Rap pedagogies: "Bring(ing) the noise" of "knowledge born on the microphone" to the racial education. In T. Daspit and L. Weaver (Eds.), Popular culture and critical pedagogy: Reading, construction, connecting. New York: Garland Publishing, Inc.
  9. Ford, M., & Forman, E. (2006). Redefining disciplinary learning in classroom contexts. Review of Research in Education, 30(1), 1-32. https://doi.org/10.3102/0091732X030001001
  10. Fusco, D. (2001). Creating relevant science through urban planning and gardening. Journal of Research in Science Teaching, 38(8), 860-877. https://doi.org/10.1002/tea.1036
  11. Glynn, S. M. (1991). Explaining science concepts: A teaching with analogies model. In S. Glynn, R. Yeany, & B. Britton (Eds.), The Psychology of learning science (pp. 219-240). Hillsdale: Lawrence Erlbaum Associates.
  12. Gonzalez, N. & Moll, L. (2002). Cruzando el puente: Building bridges to funds of knowledge. Educational Policy, 16(4), 623-641. https://doi.org/10.1177/0895904802016004009
  13. Gutierrez, K. D., Baquedano-Lopez, P., & Tejeda, C. (1999). Rethinking diversity: Hybridity and hybrid language practices in the third space. Mind, Culture and Activity, 6(4), 286-303. https://doi.org/10.1080/10749039909524733
  14. Gutierrez, K. D. (2008). Developing a sociocritical literacy in the third space. Reading Research Quarterly, 43(2), 148-164. https://doi.org/10.1598/RRQ.43.2.3
  15. Hammond, L. (2001). Notes from California: An anthropological approach to urban science education for language minority families. Journal of Research in Science Teaching, 38(9), 983-999. https://doi.org/10.1002/tea.1043
  16. Javis, T. & Pell, A. (2005). Factors influencing elementary school children's attitudes towards science before, during and after a visit to the UK National space centre. Journal of Research in Science Teaching, 42(1), 53-83. https://doi.org/10.1002/tea.20045
  17. Jo, Y. (2000). Classroom crisis as a conflict between school culture and youth culture. Anthropology of Education, 3(2), 43-66.
  18. Lave, J., & Wenger, E. (1993). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.
  19. Lee, M., & Kim, H. B. (2011). Exploring middles school students' learning development through science magazine project with focus on the perspective of participation. Journal of the Korean Association for Research in Science Education, 31(2), 256-270.
  20. Moje, E. B., Tehani, C., Carillo, R., & Marx, R. W. (2001). "Maestro, What is 'quality'?": Language, literacy, and discourse in project-based science. Journal of Research in Science Teaching, 38(4), 469-498. https://doi.org/10.1002/tea.1014
  21. Moje, E. B., Ciechanowski, K, M., Kramer, K., Ellis, L., Carrillo, R., & Collazo, T. (2004). Working toward third space in content area literacy: An examination of everyday funds of knowledge and discourse. Reading Research Quarterly, 39(1), 38-70. https://doi.org/10.1598/RRQ.39.1.4
  22. Moll, L, C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory into Practice, 31(2), 132-141 https://doi.org/10.1080/00405849209543534
  23. Moll, L. C., & Greenberg, J. (1990). Creating zones of possibilities: Combining social contexts for instruction. In L. C. Moll (Ed), Vygotsky and education, (pp. 319-348). New York: Cambridge University Press.
  24. Oh, P. S., Lee, S., & Kim, C. (2007). Cases of science classroom discourse analyzed from the perspective of knowledge-sharing. Journal of the Korean Association for Research in Science Education, 27(4), 297-308.
  25. Quigley, C. (2011). Pushing the boundaries of cultural congruence pedagogy in science education towards a third space. Cultural Studies of Science Education, 6(3), 549-557. https://doi.org/10.1007/s11422-011-9335-5
  26. Ramnarain, U., & Beer, J. (2013). Science students creating hybrid spaces when engaging in an expo investigation project. Research in Science Education, 43(1), 99-116. https://doi.org/10.1007/s11165-011-9246-1
  27. Seiler, G. (2001). Reversing the "standard" direction: Science emerging from the lives of African American students. Journal of Research in Science Teaching, 38(9), 1000-1014. https://doi.org/10.1002/tea.1044
  28. Soja, E. W. (1996). Third space: Journeys to Los Angeles and other real-and-imagined places. Malden, MA: Blackwell.
  29. Solomon, P. R. (1992). Black resistance in high school: Forging a separatist culture. Albany, NY: State University of New York Press.
  30. Steele, C. M. (1997). A threat in air: How stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613-629. https://doi.org/10.1037/0003-066X.52.6.613
  31. Strauss, A. L. & Corbin, J. M. (1990). Basics of qualitative research: Grounded theory procedures and techniques. London: Sage.
  32. Tan, E. & Barton, A. C. (2010). Transforming science learning and student participation in sixth grade science: A case study of a low-income, urban, racial minority group. Equity and Excellence, 43(1), 38-55. https://doi.org/10.1080/10665680903472367
  33. Thomas, L. & Ritchie, S. M. (2012). Positive emotional responses to hybridised writing about a socio-scientific issue. Research in Science Education, 42(1), 25-49. https://doi.org/10.1007/s11165-011-9255-0
  34. Upadhyay, B. R. (2006). Using student's lived experience in an urban science classroom: An elementary school teacher's thinking. Science Education, 90(1), 94-110. https://doi.org/10.1002/sce.20095
  35. Vygotsky, L. S. (1981). The genesis of higher mental functions. In J. V. Wretsch (Ed. and Trans.), The concept of activity in soviet psychology (pp. 144-188). Armonk, NY: M, E. Sharpe.
  36. Wallace, C. S. (2004). Framing new research in science literacy and language use: authenticity, multiple discourse, and the "Third Space". Science Education, 88(6), 901-914. https://doi.org/10.1002/sce.20024
  37. Wong, E. D. (1993). Self-generated analogies as a tool for constructing and evaluating explanations of scientific phenomena. Journal of Research in Science Teaching, 30(4), 367-380. https://doi.org/10.1002/tea.3660300405
  38. Yerrick, R., Schiller, J., & Reisfeld, J. (2011). "Who are you callin' expert?": Using student narratives to redefine expertise and advocacy lower track science. Journal of Research in Science Teaching, 48(1), 13-36. https://doi.org/10.1002/tea.20388
  39. Yu, E., Lee, S., Oh, P. S., Shin, M., & Kim, C. (2008). Case studies of the participation structures in secondary science classrooms: Exploring the possibility to develop the 'space for hybrid meaning making'. Journal of the Korean Association for Research in Science Education, 28(6), 603-617.

Cited by

  1. Students' Agency Expressed in an Elementary School Science Class vol.43, pp.3, 2015, https://doi.org/10.15717/bioedu.2015.43.3.289
  2. 과학고등학교 학생들이 R&E 참여 과정에서 드러내는 과학적 실행 및 인식 변화 -실행공동체 내에서의 합법적 주변 참여의 관점에서- vol.36, pp.3, 2014, https://doi.org/10.14697/jkase.2016.36.3.0371
  3. '과학 교실 탐구공동체' 관점 기반 과학 수업 인식 조사 도구 개발 및 적용 vol.37, pp.2, 2014, https://doi.org/10.14697/jkase.2017.37.2.0273
  4. 중등 과학교육에서 소집단을 활용한 교수학습 연구 분석 및 '소집단 연구' 방법론 고찰 vol.45, pp.3, 2014, https://doi.org/10.15717/bioedu.2017.45.3.437
  5. '모두를 위한 과학교육'을 실현하기 위한 과학 학습 정체성에 대한 사회문화적 접근 연구 동향 분석 vol.38, pp.2, 2014, https://doi.org/10.14697/jkase.2018.38.2.187
  6. 실행 과정에서의 정체성 이론의 이해와 적용 방안 vol.41, pp.3, 2021, https://doi.org/10.14697/jkase.2021.41.3.267