DOI QR코드

DOI QR Code

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods

당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석

  • Received : 2014.11.08
  • Accepted : 2014.12.05
  • Published : 2014.12.31

Abstract

The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

본 연구는 당귀의 대량생산 시스템에 적합한 재배 방식을 선정하기 위하여 담액경, 배지경, 분무경 재배 시스템에 대한 비교 평가와 당귀의 엽단위 광합성 특성을 분석하여 대량생산 시스템에서의 최적환경 조건 구명을 위하여 수행되었다. 참당귀 '만추'를 파종하여 암상태에서 발아 시킨 후에 기온 $18-22^{\circ}C$, 상대습도 50-70%, PPFD $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$ 조건으로 3주간 육묘하였다. 본엽 4매가 출현하는 시기에 담액경, 배지경, 분무경의 3개의 처리구에 각각 16주씩(총 48주) 이식하였으며 PPFD는 광원 20 cm 아래에서 $150{\pm}6{\mu}mol\;m^{-2}s^{-1}$, 온도 $20/23{\pm}1^{\circ}C$, 상대습도 50-70% 조건으로 11주간 재배하였다. 11주째에 생육조사를 실시하였으며, 당귀의 환경조건에 대한 광합성 특성을 살펴보고자, $CO_2$농도, 온도, PPFD 값에 따른 광합성특성을 휴대용 광합성 측정기를 이용하여 측정하였다. 배지경재배에서 당귀의 생체중과 건물중이 담액경 재배와 비교하여 유의적인 증가를 나타내었으며, 분무경 재배와는 유의적 차이가 발생되지 않았다. 광합성 특성으로 PPFD 값이 $50-200{\mu}mol\;m^{-2}s^{-1}$ 증가할 때 광합성 값이 급상승하는 경향을 나타내면서 $800-1600{\mu}mol\;m^{-2}s^{-1}$ 사이에서 광포화점이 있을 것으로 추정되었다. $CO_2$ 포화점은 $1000-1200{\mu}mol\;mol^{-1}$에 존재하는 것으로 관찰되었으며, 온도가 $16-26^{\circ}C$로 증가할 때, 실제 광합성 값은 거의 영향을 받지 않았다. 결과적으로 당귀를 수경재배 기술을 이용한 대량 생산 시스템에 도입할 경우 분무경 재배 시스템에 PPFD는 $150{\mu}mol\;m^{-2}s^{-1}$, $CO_2$ 농도는 약 $1000{\mu}mol\;mol^{-1}$ 이하에서, 온도는 $20{\pm}3^{\circ}C$ 조건에서 광합성 환경을 조성해 주거나 환경제어를 유지하면 당귀 대량생산 시스템의 최적 조건을 구현하여 높은 생산성을 기대할 수 있을 것으로 사료된다.

Keywords

References

  1. Ahn MJ, Bae JY, Park JH. 2011. Pharmacognostical Studies on the Angelica species from Korea. Korean Journal Pharmacognosy 42(2):103-106. [in Korean]
  2. Bang KJ, Ju JH. 2004. Effects of Light Intensity on the Growth Characteristics and Net Photosynthesis of Piper kadzura Native to Kora for Indoor Plants. Journal of Korean Institute of Landscape Architecture 32(4):1-6. [in Korean]
  3. Cha MK, Kim JS, Cho YY. 2012. Growth Response of Lettuce to Various Levels of EC and Light Intensity in Plant Factory. Journla of Bio-Environment Control 21(4):305-311. [in Korean] https://doi.org/10.12791/KSBEC.2012.21.4.305
  4. Choi CS, Lee JG, Jang YA, Lee SG, Oh SS, L HJ, Um YC. 2013. Effect of Artificial Light Sources on Growth and Quality Characteristics of Leaf Lettuce in Closed Plant Factory System. Journal of Agriculture & Life Science 47(6): 23-32. [in Korean] https://doi.org/10.14397/jals.2013.47.6.23
  5. Chung SJ, Lee BS, 1997. Effects of Ionic Strength of Nutrient Solution on Growth of Tomato Plants in Aeroponics. Jounal of Korean Society for Horticultural Science 38(6):638-641.
  6. Kang SS, Byeon HS, Kang SK, Ko DH, Lim DJ, Lee JH, Kang SH. 2013. The Effect of Extract from Leaves and Stalks of Angelica gigas on the Innate immunity. Korean Jouranl Veterinary Service 36(4):227-232. [in Korean] https://doi.org/10.7853/kjvs.2013.36.4.227
  7. Kim YS. 1992. The Investigation of Appropriate Hydroponic System for Cherry Tomatoes in Summer Season. Journal of Biology Facility Environment 2(1):53-57. [in Korean]
  8. Lee CH, Shin CH, Kim KS, Choi MS. 2006. Effects of Light Intensity on Photosynthesis and Growth in Seedling of Kalopanax pictus Nakai. Korean Journal Medicinal Crop Science 14(4):244-249. [in Korean]
  9. Lee SY, Kim HJ, Bae JH. 2011. Growth, Vitamin C, and Mineral Contents of Sedum sarmentosum in Soil and Hydroponic Cultivation. Korean Jounal of Horticultural Science & Technology 29(3):195-200. [in Korean]
  10. Li H, Kang TH. 2013. Photosynthetic Characteristics of Sedum takevimense on Various Moisture Conditions in a Green Roof System. Journal of Korean Institute of Landscape Architecture 41(6):140-146. [in Korean] https://doi.org/10.9715/KILA.2013.41.6.140
  11. Moon JO, Park KW, Kang HM. 2003. Effects of Treatment of Light, Temperature and Priming on Germination of Angelica acutiloba Kitagawa Seeds. Korean Journal of Horticultural Science Technology 21(4):434-439. [in Korean]
  12. Pang KC, Lee MW. 1995. Hemopoietic Stimulant Components from Angelicae Gigantis Radix. Chung-Ang Journal Pharmacy Science 9(1):89-95. [in Korean]
  13. Paraskevopoulou-Paroussi, G, Paroussis E. 1995. Precocity, Plant Productivity and Fruit Quality of Strawberry Plants Grown in Soil and Soiless Culture. Acta Horticulturae 408:109-117.
  14. Park KW, Ryu KO. 2000. Functional Vegetable. Herb World Press. P.8-23, pp.57-62. [in Korean]
  15. Park MH, Lee YB. 1999. Effects of $CO_2$ Concentration, Light Intensity and Nutrient Level on the Growth of Leaf Lettuce in a Plant Factory. Horticulture Environment & Biotechnology 40(4):431-435.
  16. Shimizu M, Matsuzawa T, Suzuki S, Yoshisaki M. Morita N. 1991. Evaluation of Angelicae Radix by the Inhibitory Effect on Platelet Aggregation. Chemisty Pharmacy Bulletin 39(8):2046-2048. https://doi.org/10.1248/cpb.39.2046
  17. Shin YS, Lee MJ, Lee ES, Ahn JH, Kim MK, Lee JE, Do HW, Cheung JD, Pakr JU, Um YG, Park SD, Chae JH. 2014. Effect of Light Emitting Diodes Treatment on Growth and Quality of Lettuce (Lactuca sativa L. 'Oak leaf'). Journal of Life Science 24(2):148-153. [in Korean] https://doi.org/10.5352/JLS.2014.24.2.148
  18. Tanaka S, Kano Y, Tabata M, Konoshima M. 1971. Effects of "Toki" (Angelica acutiloba Kitagawa) Extracts on Writhing and Capillary Permeability in Mice (Analgesic and Antiinflarnmatory Effects). Yakugaku Zasshi 91(6):1098-1104. [in Japanes]
  19. Toriizuka K, Nishiyama P, Adachi I, Kawashiri N, Ueno M, Terasawa K, Horikoshi I. 1986. Isolation of a platelet aggregation inhibitor from Angelicae Radix. Chemisty Pharmacy Bulletin 8:243-245.
  20. Um YC, Oh SS, Lee JG, Kim SY, Jang YA. 2010. The Development of Container-type Plant Factory and Growth of Leafy Vegetables as Affected by Different Light Sources. Journal of Bio-Environment Control 19(4):333-342. [in Korean]
  21. Yoon TC, Cheon MS, Lee DY, Moon BC, Lee HW, Choo BK, Kim HK. 2007. Effects of Root Extract from Angelica gigas and Angelica acutiloba on Inflammatory Mediators in Mouse Macrophages. Journal Applied Biology Chemistry 50(4):264-269.
  22. Yu HS, Jo JS, Park CH, Park CG, Sung JS, Park HW, Seong NS, Jin DC. 2003. Plant Growth and Bolting Affected by Transplanting Time in Angelica gigas. Korean Journal Medicinal Crop Science 11(5):392-396. [in Korean]

Cited by

  1. 당귀의 수경재배에서 LED 광원에 의한 생장 증가와 형광등에 의한 기능성물질 축적 vol.25, pp.1, 2016, https://doi.org/10.12791/ksbec.2016.25.1.42