DOI QR코드

DOI QR Code

Quality Preservation of Shredded Carrots Stored in UV LED Packaging System

자외선 LED 포장용기 시스템에 의한 포장절단당근의 품질보존

  • Kim, Nam Yong (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Lee, Dong Sun (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • An, Duck Soon (Dept. of Food Science and Biotechnology, Kyungnam University)
  • Received : 2013.09.04
  • Accepted : 2013.10.22
  • Published : 2014.01.31

Abstract

Pre-storage ultra-violet (UV) light treatment on fresh produce is known to inactivate the contaminated microorganisms, activate the defense system, and delay ripening extending the shelf life. As UV light emitting diode (LED) becomes available at a relatively low price, continuous or intermittent UV treatment during chilled storage is possible in a container or package. This study attempted an in situ UV LED treatment on fresh produce stored under a refrigerated container in order to see its potential in the fresh produce storage and further optimize its application conditions. The effect of in-container UV LED irradiation on the quality preservation of shredded carrots was investigated in the air and modified atmosphere (MA) conditions. Two sets of experiment with Escherichia coli inoculation and with natural microbial flora in the air (two 30 minute on-off cycles of 1 $diode/dm^2$ per day at a location above 2 cm) showed a clear and significant effect of the UV LED irradiation on the suppression of microbial growth: 280 nm was the most effective by maintaining a lower microbial count by at least 0.5 log (CFU/g) throughout the 6 day storage period. The carotenoids content of shredded carrots subjected to UV LED treatment at 365 and 405 nm in the air was higher than that of the control shredded carrots. In MA condition of $O_2$ of 1.2~4.3% and $CO_2$ of 8.4~10.6% being indifferent with LED wavelengths, 280 nm UV LED irradiation was also effective in inhibiting the microbial growth. While there was no observed difference in the carotenoids content between untreated and UV LED-treated shredded carrots in MA, UV LED irradiation at 365 and 405 nm was slightly better in DPPH radical scavenging activity. The use of UV LED in storage container or package seems to give the benefits of preserving the microbial and nutritional qualities of minimally processed fruits and vegetables.

신선농산물의 저장성을 향상시키기 위해 저장용기에 장착된 자외선영역의 LED는 저온 냉장시스템에서 지속적 조사처리 또는 간헐적 조사 처리 방식으로 활용되며 비교적 저렴한 가격으로 이용 가능하다. 저장용기에 자외선영역의 280 nm, 365 nm, 405 nm LED를 각각 장착하고 대표적 신선편이식품의 하나로서 절단당근을 선택하여 $10^{\circ}C$ 온도에 저장하면서 LED 조사 처리 조건에 따른 품질변화를 살펴보았다. 저장용기의 뚜껑 안쪽 부분에 장착된 자외선 LED는 절단당근의 표면으로부터 2 cm 높이에서 조사되도록 하였으며, 하루에 30분 간격으로 on/off를 2회 반복하여 조사하였다. 공기조건에서 절단당근에 Escherichia coli 균주를 접종한 경우와 자연적 미생물 오염도를 측정해 본 결과, 280 nm 자외선 LED 조사 처리를 한 경우 다른 파장(365 nm, 405 nm)의 조사 처리구보다 더 큰 미생물 성장 억제능력을 보여 가장 효과적이었다. 공기 조건에서 절단당근의 카로티노이드 함량은 365 nm와 405 nm에서 대조구에 비해 높은 함량을 보였다. MA 조건에서는 대조구를 포함한 모든 처리구에서 산소농도 1.2~4.3%, 이산화탄소 농도 8.4~10.6%의 가스농도로 유지하여 LED 처리에 따른 내부기체조성의 차이는 나타나지 않았지만, 280 nm 자외선 LED 조사 처리가 가장 큰 미생물 성장 억제를 보였다. 카로티노이드 함량은 LED 조사 효과보다 MA 포장 효과에 의해 카로티노이드 보존이 지배적으로 작용한 것으로 보여 처리구 간의 유의적인 차이는 없었다. MA 조건에서 DPPH 라디칼에 대한 소거활성은 365 nm와 405 nm에서 약간 높게 나타났다. 이를 바탕으로 자외선 LED를 이용하여 신선농산물 포장의 적용가능성을 확인하였으며, 저장용기에 자외선 LED를 장착함으로써 수확 후 수송, 판매, 저장 단계에서 신선농산물을 더욱 신선하게 유지시킬 것으로 기대된다.

Keywords

References

  1. Thompson AK. 1998. Controlled atmosphere storage of fruits and vegetables. CAB International, Wallingford, UK. p 81-116.
  2. Jeong MJ, An DS, Lee SJ, Lee DS. 2011. A master packaging system for preserving strawberries in the fresh produce supply chain. J Food Agric Environ 9: 114-117.
  3. Beaudry R. 2007. MAP as a basis for active packaging. In Intelligent and Active Packaging for Fruits and Vegetables. Wilson CL, ed. CRC Press, Boca Raton, FL, USA. p 31-55.
  4. Goldthwaite JJ, Laetsch WM. 1967. Regulation of senescence in bean leaf discs by light and chemical regulators. Plant Physiol 42: 1757-1762. https://doi.org/10.1104/pp.42.12.1757
  5. Kays SJ. 1991. Postharvest physiology of perishable plant products. Van Nostrand Reinhold, New York, NY, USA. p 75-142.
  6. Hosoda H, Nawa Y, Kurogi M. 1981. Effect of light on postharvest quality in vegetables. Part 1. changes in chemical components in detached komatsuna leaves during storage. Rep Natl Food Res Inst 38: 33-39.
  7. Burton WG. 1982. Post-harvest physiology of food crops. Longman, London, UK. p 127-198.
  8. Hosoda H, Nawa Y, Kurogi M. 1981. Effect of light on postharvest quality in vegetables. Part 2. changes in chemical components in attached komatsuna leaves during storage. Rep Natl Food Res Inst 38: 40-45.
  9. Lamikanra O, Kueneman D, Ukuku D, Bett-Garber KL. 2005. Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. J Food Sci 70:C534-C539.
  10. Kim NY, Kwon MJ, Lee DS, An DS. 2012. Effect of UVLED irradiation on microbial growth on solid media as a model for food. J Food Agric Environ 10: 129-131.
  11. Klaiber RG, Baur S, Wolf G, Hammes WP, Carle R. 2005. Quality of minimally processed carrots as affected by warm water washing and chlorination. Innovative Food Sci Emerging Technol 6: 351-362. https://doi.org/10.1016/j.ifset.2005.03.002
  12. Cho YS, Ha BS, Park SK, Chun SS. 1993. Contents of carotenoids and cholorophylls in Dolsan leaf mustard. Korean J Dietary Culture 8: 153-157.
  13. AOAC. 1980. Official methods of analysis. 13th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 49-51.
  14. von Elbe JH, Schwartz SJ. 1996. Colorants. In Food Chemistry. 3rd ed. Fennema OR, ed. Marcel Dekker Inc., New York, NY, USA. p 651-722.
  15. Kays SJ. 1991. Postharvest physiology of perishable plant products. Van Nostrand Reinhold, New York, NY, USA. p 143-255.
  16. Bialka KL, Demirci A. 2008. Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. J Food Sci 73: M201-M207.
  17. Manzocco L, Da Pieve S, Maifreni M. 2011. Impact of UVC light on safety and quality of fresh-cut melon. Innovative Food Sci Emerging Technol 12: 13-17. https://doi.org/10.1016/j.ifset.2010.11.006
  18. Du WX, Avena-Bustillos RJ, Breksa AP III, McHugh TH. 2012. Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chem 134: 1862-1869. https://doi.org/10.1016/j.foodchem.2012.03.097
  19. Hong JY, Lee SK, Cho YJ, Kim CJ, Kim N, Kim CT, Maeng JS. 2012. Effect of post-harvest ultraviolet irradiation on biological activities in strawberries. Food Eng Prog 16: 69-73.
  20. Erkan M, Wang SY, Wang CY. 2008. Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol Technol 48:163-171. https://doi.org/10.1016/j.postharvbio.2007.09.028