DOI QR코드

DOI QR Code

Diffraction-Limited High-Power Single-Cycle Terahertz Pulse Generation in Prism-Cut LiNbO3 for Precise Terahertz Applications

  • Baek, In Hyung (Department of Physics and Division of Energy Systems Research, Ajou University) ;
  • Kang, Bong Joo (Department of Physics and Division of Energy Systems Research, Ajou University) ;
  • Jeong, Young Uk (Center for Quantum-Beam based Radiation Research, Korea Atomic Energy Research Institute) ;
  • Rotermund, Fabian (Department of Physics and Division of Energy Systems Research, Ajou University)
  • Received : 2013.10.10
  • Accepted : 2014.01.20
  • Published : 2014.02.25

Abstract

We report the generation of 3.3-mW single-cycle terahertz (THz) pulses at 1-kHz repetition rate via optical rectification in MgO-doped prism-cut stoichiometric LiNbO3. Efficient pulse-front tilting of 800-nm pulses was realized by an optimized single-lens focusing scheme for radially-symmetric propagation of THz beams. In this geometry, nearly-diffraction-limited THz Gaussian beams with electric field strength as high as 350 kV/cm were generated. The pump-to-THz energy conversion efficiency of $1.36{\times}10^{-3}$ and the extremely high signal-to-noise ratio of ~1:15000 achieved are among the best results for 1-kHz single-cycle terahertz pulse generation ever demonstrated in room temperature operation.

Keywords

References

  1. Y. Ueno and K. Ajito, "Analytical terahertz spectroscopy," Anal. Sci. 24, 185-192 (2008). https://doi.org/10.2116/analsci.24.185
  2. E. Jung, M. Lim, K. Moon, Y. Do, S. Lee, H. Han, H. J. Choi, K.-S. Cho, and K.-R. Kim, "Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients," J. Opt. Soc. Korea 15, 155-160 (2011). https://doi.org/10.3807/JOSK.2011.15.2.155
  3. H.-J. Song and T. Nagatsuma, "Present and future of terahertz communications," IEEE Trans. THz Sci. Technol. 1, 256-263 (2012).
  4. M. C. Hoffmann, N. C. Brandt, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, "Terahertz Kerr effect," Appl. Phys. Lett. 95, 231105 (2009). https://doi.org/10.1063/1.3271520
  5. F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V. Titova, T. Ozaki, J.-C. Kieffer, R. Morandotti, M. Reid, and F. A. Hegmann, "Terahertz pulse induced intervalley scattering in photoexcited GaAs," Opt. Express 17, 9620-9629 (2009). https://doi.org/10.1364/OE.17.009620
  6. E. Hendry, P. J. Hale, J. Moger, and A. K. Savchenko, "Coherent nonlinear optical response of graphene," Phys. Rev. Lett. 105, 097401 (2010). https://doi.org/10.1103/PhysRevLett.105.097401
  7. K. Tanaka, H. Hirori, and M. Nagai, "THz nonlinear spectroscopy of solids," IEEE Trans. THz Sci. Technol. 1, 301-312 (2011). https://doi.org/10.1109/TTHZ.2011.2159535
  8. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). https://doi.org/10.1364/JOSAB.7.002006
  9. I. Kostakis, D. Saeedkia, and M. Missous, "Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 ${\mu}m$ pulse excitation," IEEE Trans. THz Sci. Technol. 2, 617-622 (2012). https://doi.org/10.1109/TTHZ.2012.2219047
  10. D. You, R. R. Jones, P. H. Bucksbaum, and R. Dykaar, "Generation of high-power sub-single-cycle 500-fs electromagnetic pulses," Opt. Lett. 18, 290-292 (1993). https://doi.org/10.1364/OL.18.000290
  11. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Gunter, "Generation of terahertz pulses through optical rectification in organic DAST crystals: Theory and experiment," J. Opt. Soc. Am. B 23, 1822-1835 (2006). https://doi.org/10.1364/JOSAB.23.001822
  12. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, "Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals," J. Opt. Soc. Am. B 28, 1973-1987 (2011). https://doi.org/10.1364/JOSAB.28.001973
  13. L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992). https://doi.org/10.1063/1.108426
  14. J. A. Fulop, L. Palfalvi, G. Almasi, and J. Hebling, "Design of high-energy terahertz sources based on optical rectification," Opt. Express 18, 12311-12317 (2010). https://doi.org/10.1364/OE.18.012311
  15. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, "Generation of $30{\mu}J$ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification," Opt. Lett. 33, 2497-2499 (2008). https://doi.org/10.1364/OL.33.002497
  16. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, "Singlecycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in $LiNbO_3$," Appl. Phys. Lett. 98, 091106 (2011). https://doi.org/10.1063/1.3560062
  17. S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, "Efficient terahertz generation by optical rectification in Si-$LiNbO_3$-air-metal sandwich structure with variable air gap," Appl. Phys. Lett. 100, 201114 (2012). https://doi.org/10.1063/1.4719674
  18. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, USA, 2010), pp. 28-30.
  19. J. A. Fulop, L. Palfalvi, S. Klingebiel, G. Almasi, F. Krausz, S. Karsch, and J. Hebling, "Generation of sub-mJ terahertz pulses by optical rectification," Opt. Lett. 37, 557-559 (2012). https://doi.org/10.1364/OL.37.000557
  20. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kartner, "High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate," Opt. Lett. 38, 796-798 (2013). https://doi.org/10.1364/OL.38.000796
  21. Q. Wu and X.-C. Zhang, "Free-space electro-optics sampling of mid-infrared pulses," Appl. Phys. Lett. 71, 1285-1286 (1997). https://doi.org/10.1063/1.119873

Cited by

  1. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies vol.115, pp.12, 2015, https://doi.org/10.1103/PhysRevLett.115.125501
  2. Colossal Terahertz Nonlinearity in Angstrom- and Nanometer-Sized Gaps vol.3, pp.8, 2016, https://doi.org/10.1021/acsphotonics.6b00103
  3. Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy vol.6, pp.1, 2016, https://doi.org/10.1038/srep29103
  4. Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration vol.94, pp.3, 2016, https://doi.org/10.1103/PhysRevA.94.033803
  5. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate vol.6, pp.1, 2016, https://doi.org/10.1038/srep38880
  6. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime vol.15, pp.10, 2015, https://doi.org/10.1021/acs.nanolett.5b02505