DOI QR코드

DOI QR Code

습식 배연탈황 시스템의 효율 향상을 위한 전산해석

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas

  • 황우현 (동양미래대학교 로봇자동화공학부) ;
  • 이경옥 (경기과학기술대학교 청정환경과)
  • Hwang, Woo-Hyeon (School of Robot and Automation, Dongyang Mirae University) ;
  • Lee, Kyung-Ok (Department of Clean Production, Gyeonggi College of Science and Technology)
  • 투고 : 2014.01.21
  • 심사 : 2014.02.13
  • 발행 : 2014.02.28

초록

본 논문에서는 CFDRC 사의 상용 CFD 소프트웨어인 CFD-ACE+로 전산유체역학 기법을 적용하여 수치 해석을 수행하여 배연탈황 설비에서 Induced Draft Fan(I.D.Fan) 출구부터 Booster Up Fan(B.U.Fan) 입구까지 난류 유동장과 연소 유동 문제를 모사하여 배기가스 계통 설비의 유동 특성을 해석하였다. 배기가스가 I.D.Fan 출구 ~ B.U.Fan 입구 구간을 적정속도로 균일하게 유동하여 B.U.Fan로 균일하게 유입되도록 하며 압력손실이 적게 발생하도록 설계기준 보일러 부하와 최대연속 정격유량의 보일러 부하에서 이 구간의 안내깃을 검토하였다. 검토한 결과에 대해 CFD 해석을 수행하여 I.D.Fan 출구에서 안내깃을 제거하고 B.U.Fan 입구 전에 안내깃을 보강할 수 있도록 설계를 변경하였다. 배기가스 계통에 변경된 설계를 적용하여 수치모사한 결과에서 배연탈황 설비 내부의 배기가스 압력손실이 줄어들고 유속과 유선이 균일하게 유동할 수 있어 배연탈황 시스템의 효율이 향상한 것을 확인하였다.

In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

키워드

참고문헌

  1. S. Kang, S. Lee, W. Jung, S. Chung., Y. Yun, S. Jo, Y. Park., J. Baek, "Performance of a coal gasification pilot plant with hot fuel gas desulfurization," J. KIChE, Vol.30, No.1, pp.67-72, 2013. https://doi.org/10.1007/s11814-012-0084-2
  2. J. Hwang, S. Choi, T. Chung, "Numerical analysis of the energy-saving tray absorber of flue-gas desulfurization systems," J. KSME B, Vol.34, No.8, pp. 775-782, 2010. https://doi.org/10.3795/KSME-B.2010.34.8.775
  3. Y. Li, C. You, "Experimental and model investigation on the mass balance of a dry circulating fluidized bed for flue gas desulfurization system," KJChE, Vol.28, No.9, pp.1956-1963, 2011. https://doi.org/10.1007/s11814-011-0056-y
  4. G. Zhang, Y. Du, Y. Zhang, "Desulfurization reaction model and experimental analysis of high sulfur coal under hydrogen atmosphere," J. I&EC, Vol.20, No.2, pp.487-493, 2014.
  5. G. Aurora, A.M. Jose, I. Angel, "Mechanistical and non-linear modeling approaches to in duct desulfurization, Chemical Engineering and Processing," pp. 709-715, 2005.
  6. S. Sugiyama, M. Yamamoto, H. Nishikawa, Y. Oda, "Numerical investigations on fully-developed and unsteady flows in a curved duct," JSME, Part B, Vol.57, pp. 18-24, 1991.
  7. S. Lee, C. Kim, W. Lee, "CFD Explanation and Verification of Multi Inner Stage Cyclone for the Particle Removal," J. KSCI, Vol.18, No.1, pp.149-156, 2013. https://doi.org/10.9708/jksci.2013.18.1.149
  8. W. Hwang, K. Lee, Y. Cho, "Optimization of the Design of Large Ducts with the Space Constraint in 500MW Power Plant," J. Env. Sci., Vol.18, No.7, pp. 755-765, 2009.