DOI QR코드

DOI QR Code

광 케이블 풀림 거동의 실험적 검증 및 고속 풀림 거동 예측

Experimental Verification of Unwinding Behavior of Fiber-Optic Cable and Prediction of High-Speed Unwinding

  • Kim, Kun Woo (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Jae Wook (Construction Equipment R & D Group, Korea Institute of Technology) ;
  • Kim, Hyung Ryul (Agency for Defense Development) ;
  • Yoo, Wan Suk (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2013.06.20
  • 심사 : 2013.11.14
  • 발행 : 2014.03.01

초록

유도체의 발사로 인해 스풀로부터 풀리는 광 케이블은 모함과의 통신을 통해 작전 수행 능력을 향상시키는 역할을 한다. 일반적으로 광 케이블의 풀림은 거동의 안정성 확보 및 풀림 불량 방지를 위하여 수중에서 진행된다. 따라서 본 연구에서는 실험을 통해 스풀로부터 풀리는 광 케이블의 거동특성을 확보하고 이를 풀림 거동 해석 결과와 비교함으로써 해석의 신뢰성을 검증한다. 실험 장치의 구성은 수조와 감김 장치로 구성되며, 고속카메라를 통해 케이블의 풀림 거동을 촬영하였다. 해석결과를 제시하기 위한 과도 상태 운동 방정식은 직교 좌표계를 사용하여 정의한 뒤, 실험 결과와의 비교를 통해 해석 결과의 타당성을 검증하였으며, 풀림 속도의 증가에 따른 풀림 거동을 예측하였다.

Fiber-optic cables towed by underwater vehicles have an important role in enhancing the mission capability of a mother ship. In general, fiber optic cables are unwound in water for securing unwinding stability and preventing unwinding-related problems. Therefore, in this study, the numerically simulated result is verified against the experimental result in water, and the cable-unwinding motion is predicted based on the increase in unwinding velocity. The experimental apparatus is composed of a water tank and a winder, and a high-speed camera is used for photographing the cable-unwinding motion. The numerical result defined in the Cartesian coordinate system is solved using a transient-state unwinding equation of motion. The numerical result agrees well with the experimental result, and it can predict cable-unwinding behaviors in according to an increase in the unwinding velocity.

키워드

참고문헌

  1. Wire Guided Missle, MILAN Project, http://www.eliteukforces.info/weapons/milan/.
  2. Wire Guided Torpedo, DM2A4, http://www.atlas-elektronik.com/.
  3. Padfield, D. G., 1956, "The Motion and Tension of an Unwinding Thread. I,," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 245, No. 1242, pp. 382-407.
  4. Kothari, V. K. and Leaf, G. A. V., 1979, "The Unwinding of Yarns from Packages, Part I: The Theory of Yarn-Unwinding," Journal of Textile Industry, No. 3, pp. 89-95.
  5. Fraser, W. B., Ghosh, T. K. and Batra, S. K., 1992, "On Unwinding Yarn from a Cylindrical Package," Proceedings: Mathematical and Physical Sciences, Vol. 436, No. 1898, pp. 479-498.
  6. Lee, J. W., An, D. M. and Yoo, W. S., 2011, "Derivation of Equations of Motion of an Unwinding Cable from a Cylindrical Spool Package," Journal of Mechanical Science and Technology, Vol. 25 , No. 5, pp. 1253-1260. https://doi.org/10.1007/s12206-011-0314-2
  7. Lee, J. W., Kim, K. W., Kim, H. R. and Yoo, W. S., 2012, "Prediction of Unwinding Behaviors and Problems of Cables from Inner-Winding Spool Dispensers," Nonlinear Dynamics, Vol. 67, pp. 1791-1809. https://doi.org/10.1007/s11071-011-0106-3
  8. Kim, K. W., Lee, J. W. and Yoo, W. S., 2012, "Effect of Gravity and Tangential Air Resistance on Unwinding Cable," Nonlinear Dynamics, Vol. 70, pp. 67-87. https://doi.org/10.1007/s11071-012-0431-1
  9. HBS bending beam load cell, http://www.cas.co.kr/.
  10. E2E-X551 proximity detector, http://www.omron.co.kr/.
  11. MotionPro Y3-S1 High Speed Camera, http://www.idtvision.com/.
  12. Gerhart, P. M., Gross, R. J. and Hochstein, J. I., 1992, Fundamentals of Fluid Mechanics, 2nd Ed. Addison-Wesley Publishing Company.
  13. Choo, Y. I. and Casarella M. J., 1971, "Hydrodynamic Resistance of Towed Cables," Journal of Hydronautics, Vol. 5, No. 4, pp. 126-131. https://doi.org/10.2514/3.62882
  14. Kiusalaas, J., 2005, Numerical Methods in Engineering with Matlab, Cambridge University Press.
  15. Hoffmann, K. A. and Chang, S. T., 2000, Computational Fluid Dynamics for Engineers, A Publication of Engineering Education System.
  16. Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall International Inc.
  17. Savitzky, A. and Golay, M. J. E., 1964, "Smoothing and Differentiation of Data by Simplified Least Squares Procedures," Analytical Chemistry, Vol. 36, No. 8, pp. 1627-1639. https://doi.org/10.1021/ac60214a047
  18. Godawat, P., 2003, Experimental Verification of Non-Linear Behavior of Over-End Yarn Unwinding from Cylindrical Packages, Master Degree of North Carolina State University.
  19. Kim, H. R., Kim, K. W., Yoo, W. S. and Lee, J. W., 2013, Transient and Steady-State Analysis of a Thin Cable Unwinding from a Pay-out Dispenser, Journal of Mechanical Science and Technology, No. 2, pp. 353-358. https://doi.org/10.1007/s12206-013-0101-3
  20. Isakov, N. P., 1961, Yarn Tension in a Balloon, Tech. of Textile Industry U.S.S.R., No. 2, p. 92.