DOI QR코드

DOI QR Code

Understanding of Protein Adsorption Kinetics to Contact Lens Hydrogels

콘택트렌즈용 하이드로젤로의 단백질 흡착 반응속도 이해

  • Kim, Hyun-Jae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Mira (Department of Optometry, Seoul National University) ;
  • Noh, Hyeran (Department of Optometry, Seoul National University)
  • 김현재 (연세대학교 화공생명공학과) ;
  • 김미라 (서울과학기술대학교 안경광학과) ;
  • 노혜란 (서울과학기술대학교 안경광학과)
  • Received : 2013.10.28
  • Accepted : 2013.11.18
  • Published : 2014.03.25

Abstract

Protein adsorption kinetics was studied with the amount of proteins adsorbed to contact lens hydrogels over time scales. Hydroxyethylmethacrylate (HEMA) and silicone hydrogels were dipped in protein solutions (albumin or IgG) and adsorption amounts were measured over time scales. The amount of protein adsorbed to both hydrogel types increased rapidly in 10 min, and remained consistently in 90 min. Decreasing interfacial energetics was taken slowly up to an hour in spite of rapid diffusion of protein molecules. This is due to the fact that water deprivation from three dimensional interphase initially formed by protein diffusion took over an hour. Interpretation of adsorption kinetics on contact lens hydrogels was discussed with understanding of relationship between surface energy and protein adsorption capacity.

콘택트렌즈용 하이드로젤로의 단백질 흡착량을 시간에 따라 분석하여 계면으로 확산되는 단백질 흡착 반응속도를 연구하였다. HEMA(hydroxyethylmethacrylate)계열 하이드로젤과 silicone계열 하이드로젤을 단백질(알부민 또는 IgG)용액에 침지시킨 후 단백질 흡착량을 시간에 따라 측정하였다. 모든 하이드로젤로의 단백질 흡착량은 단시간(10분)에 급격히 증가한 후 90분 동안 변화 없이 일정하였다. 빠른 단백질 분자의 확산에도 불구하고 계면에너지 감소는 한 시간 이상 진행되는데 이는 계면 탈수 현상이 한 시간 이상 진행되기 때문으로 이해된다. 계면에너지와 단백질 흡착량의 상관관계를 이해하여 콘택트렌즈 재질로의 단백질 흡착 반응 속도의 메커니즘을 분석하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. P. Parhi, A. Golas, N. Barnthip, H. Noh, and E. A. Vogler, Biomaterials, 30, 6814 (2009). https://doi.org/10.1016/j.biomaterials.2009.09.005
  2. H. Noh and E. A. Vogler, Biomaterials, 28, 405 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.006
  3. H. Noh, S. Yohe, and E. A. Vogler, Biomaterials, 29, 2033 (2006).
  4. A. Krishnan, J. Sturgeon, C. Siedlecki, and E. A. Vogler, Langmuir, 19, 10342 (2003). https://doi.org/10.1021/la035308t
  5. J. Brash and D. Lyman, J. Biomed. Mater. Res., 3, 175 (1969). https://doi.org/10.1002/jbm.820030114
  6. K. L. Menzies and L. Jones, Optom. Vis. Sci., 88, 493 (2011). https://doi.org/10.1097/OPX.0b013e3181ff9d39
  7. K. L. Menzies, In vitro Analysis of Wettability and Physical Properties of Blister Pack Solutions of Hydrogel Contact Lenses, University of Waterloo, pp. 1-251 (2010).
  8. B. Holden, D. Sweeney, A. Vannas, K. Nilsson, and N. Efron, Invest. Ophthalmol. Vis. Sci., 26, 1489 (1985).
  9. P. C. Nicolson and J. Vogt, Biomaterials, 22, 3273 (2001). https://doi.org/10.1016/S0142-9612(01)00165-X
  10. N. Barnthip, H. Noh, E. Leibner, and E. A. Vogler, Biomaterials, 29, 3062 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.043
  11. R. Varoqui and E. Pefferkorn, J. Colloid Interface Sci., 109, 520 (1986). https://doi.org/10.1016/0021-9797(86)90332-2
  12. J. Feder and I. Giaever, J. Colloid Interface Sci., 78, 144 (1980). https://doi.org/10.1016/0021-9797(80)90502-0
  13. G. Sagvolden, I. Glaever, and J. Feder, Langmuir, 14, 5984 (1998). https://doi.org/10.1021/la980271b
  14. S. Slomkowski, S. Sosnowski, and E. Przerwa, CR Chim., 6, 1393 (2003). https://doi.org/10.1016/j.crci.2003.10.003
  15. A. Krishnan, Y. Liu, P. Cha, D. L. Allara, and E. A. Vogler, Biomaterials, 27, 3187 (2006). https://doi.org/10.1016/j.biomaterials.2005.12.032
  16. A. Krishnan, J. Sturgeon, C. A. Siedlecki, and E. A. Vogler, J. Biomed. Mater. Res., 68A, 544 (2004). https://doi.org/10.1002/jbm.a.20104
  17. A. Krishnan, Y.-H. Liu, P. Cha, D. Allara, and E. A. Vogler, Biomaterials, 27, 3187 (2006). https://doi.org/10.1016/j.biomaterials.2005.12.032
  18. R. Miller, Colloid Polym. Sci., 259, 375 (1981). https://doi.org/10.1007/BF01524718
  19. S. Jeon and H. Noh, Polymer(Korea), 36, 338 (2012).
  20. H. Noh and E. A. Vogler, Biomaterials, 27, 5801 (2006). https://doi.org/10.1016/j.biomaterials.2006.08.005
  21. M. C. Lensen, V. A. Schulte, J. Salber, M. Diez, F. Menges, and M. Moller, Pure. Appl. Chem., 80, 2479 (2008).
  22. J. M. Gonzalez-Meijome, A. Lopez-Alemany, J. B. Almeida, M. A. Parafita, and M. F. Refojo, J. Biomed. Mater. Res. B. Appl. Biomater., 83, 512 (2007).
  23. A. Krishnan, Y.-H. Liu, P. Cha, D. Allara, and E. A. Vogler, J. R. Soc. Interface, 3, 283 (2006). https://doi.org/10.1098/rsif.2005.0087
  24. A. Fick, London Edinburgh Dublin Philos Mag., J. Sci., 10, 30 (1855).
  25. E. Vogler, Biomaterials, 33, 1202 (2012).
  26. E. Pefferkorn, A. Carroy, and R. Varoqui, Macromolecules, 18, 2252 (1985). https://doi.org/10.1021/ma00153a033
  27. E. Guggenheim, Thermodynamics: An Advanced Treatment for Chemists and Physicists, Wiley, New York, 1967.
  28. E. A. Volger, "Interfacial chemistry in biomaterials science", in Wettability, J. Berg, Editor, Marcel Dekker, New York, USA, Vol 5, p 183 (1993).
  29. E. A. Vogler, Adv. Colloid Interface Sci., 74, 69 (1999).