DOI QR코드

DOI QR Code

Synthesis of CoFe2O4 Magnetic Nanoparticles by Thermal Decomposition

  • Soundararajan, D. (Department of Physics, Yeungnam University) ;
  • Kim, Ki Hyeon (Department of Physics, Yeungnam University)
  • Received : 2013.11.25
  • Accepted : 2013.12.17
  • Published : 2014.03.31

Abstract

The amine functionalized $CoFe_2O_4$ nanoparticles were prepared by thermal decomposition method at reflux temperatures $160^{\circ}C$ and $172^{\circ}C$. The obtained $CoFe_2O_4$ nanoparticles at $160^{\circ}C$ reflux temperature show aggregation free poly-dispersed nanoparticles in 4-15 nm range. In an elevated reflux temperature of $172^{\circ}C$, $CoFe_2O_4$ show aggregated poly-dispersed nanoparticles in the size range of 20-46 nm. The saturation magnetization value at 300 K exhibited 51 emu/g at reflux temperature of $160^{\circ}C$. However, the sample synthesized at an elevated temperature of $172^{\circ}C$ has shown a coercive field value of 560 Oe with saturation magnetization of 68 emu/g.

Keywords

References

  1. T. E. Quickel, V. H. Le, T. Brezesinski, and S. H. Tolbert, Thin Films. 10, 2982 (2010).
  2. G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev. B. 67, 014418 (2003). https://doi.org/10.1103/PhysRevB.67.014418
  3. B. E. Kashevsky, V. E. Agabekov, S. B. Kashevsky, K. A. Kekalo, E. Y. Manina, I. V. Prokhorov, and V. S. Ulashchik, Particuology 6, 322 (2008). https://doi.org/10.1016/j.partic.2008.07.001
  4. V. Pillai and D. O. Shah, J. Magn. Magn. Mater. 163, 243 (1996). https://doi.org/10.1016/S0304-8853(96)00280-6
  5. P. Jeppson, R. Sailer, E. Jarabek, J. Sandstrom, B. Anderson, M. Bremer, D. G. Grier, D. L. Schulz, and A. N. Caruso, J. Appl. Phys. 100, 114324 (2006). https://doi.org/10.1063/1.2399885
  6. H. Zeng, C. T. Black, R. L. Sandstrom, P. M. Rice, C. B. Murray, and S. Sun, Phys. Rev. B. 73, 020402[R] (2006).
  7. G. Baldi, G. Lorenzi, and C. Ravagli, Processing and Application of Ceramics 3, 103 (2009). https://doi.org/10.2298/PAC0902103B
  8. Li Xi, Zhen Wang, Yalu Zuo, and Xiaoning Shi, Nanotechnology 22, 045707 (2011). https://doi.org/10.1088/0957-4484/22/4/045707
  9. Conroy Sun, Jerry S. H. Lee, and Miqin Zhang, Adv. Drug Deliv. Rev. 60, 1252 (2008). https://doi.org/10.1016/j.addr.2008.03.018
  10. K. Sinko, E. Manek, A. Meiszterics, K. Havancsak, U. Vainio, and H. Peterlik, J. Nanopart. Res. 14, 894 (2012). https://doi.org/10.1007/s11051-012-0894-5
  11. H. F. Yu and A. M. Gadalla, J. Mater. Res. 11, 663 (1996). https://doi.org/10.1557/JMR.1996.0080
  12. J. S. Jiang, X. L. Yang, and L. S. Gao, Nanostruct. Mater. 12, 143 (1999). https://doi.org/10.1016/S0965-9773(99)00084-7
  13. A. L. Gurgel, J. M. Soares, D. S. Chaves, D. S. Chaves, M. M. Xavier, M. A. Morales, and E. M. Baggio-Saitovitch, J. App. Phys. 107, 09A746 (2010). https://doi.org/10.1063/1.3339784
  14. P. Vlazan and M. Vasile, Optoelect. Adv. Mater. 4, 1307 (2010).
  15. H. Nathani, S. Gubbala, and R. D. K. Misra, Mat. Sci. Eng. B. 121, 126 (2005). https://doi.org/10.1016/j.mseb.2005.03.016
  16. M. R. Anantharaman, S. Jagatheesan, K. A. Malini, S. Sindhu, A. Narayanasamy, C. N. Chinnasamy, J. P. Jacobs, S. Reijne, K. Seshan, R. H. H. Smits, and H. H. Brongersma, J. Magn. Magn. Mater. 189, 83 (1998). https://doi.org/10.1016/S0304-8853(98)00171-1
  17. Y. Liu, Y. Zhang, J. D. Feng, C. F. Li, J. Shi, and R. Xiong, J. Exp. Nanosci. 4, 159 (2009) https://doi.org/10.1080/17458080902929895
  18. N. Dix, V. Skumryev, V. Laukhin, L. Fabrega, F. Sanchez, and J. Fontcubert, Mat. Sci and Eng. B. 144, 127 (2007). https://doi.org/10.1016/j.mseb.2007.07.050
  19. B. X. Gao, L. Liu, B. Birajdar, M. Ziese, W. Lee, M. Alexe, and D. Hesse, Adv. Mater. 19, 3450 (2009).
  20. Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, X. Zhou, and J. Men, J. Phys. Chem. C. 112, 15171 (2008). https://doi.org/10.1021/jp802614v
  21. N. C. Pramanik, T. S. Fujii, M. Nakanishi, and J. Takada, J. Mater. Sci. 40, 4169 (2005). https://doi.org/10.1007/s10853-005-3819-1
  22. D. Soundararajan, J. H. Park, K. H. Kim, and J. M. Ko, Curr. Appl. Phys. 12, 854 (2012). https://doi.org/10.1016/j.cap.2011.11.020
  23. Chao Liu, Adam J. Rondinone, and Z. John Zhang, Pure Appl. Chem. 72, 37 (2000).
  24. D. Soundararajana, D. Mangalaraj, D. Nataraj, L. Dorosinskii, and K. H. Kim, Mat. Lett. 87, 113 (2012). https://doi.org/10.1016/j.matlet.2012.07.042
  25. C. Vazquez-Vazquez, M. A. Lopez-Quintela, M. C. Bujan-Nunez, and J. Rivas, J. Nanopart. Res. 13, 1663 (2011). https://doi.org/10.1007/s11051-010-9920-7

Cited by

  1. Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach vol.52, pp.9, 2017, https://doi.org/10.1007/s10853-016-0719-5
  2. Advances in Magnetic Nanoparticles for Biomedical Applications vol.7, pp.5, 2018, https://doi.org/10.1002/adhm.201700845
  3. Magnetite-based adsorbents for sequestration of radionuclides: a review vol.8, pp.5, 2018, https://doi.org/10.1039/C7RA12299C