DOI QR코드

DOI QR Code

Magnetization and Intrinsic Coercivity for τ-phase Mn54Al46/α-phase Fe65Co35 Composite

  • Park, Jihoon (Department of Electrical and Computer Engineering and MINT Center, the University of Alabama) ;
  • Hong, Yang-Ki (Department of Electrical and Computer Engineering and MINT Center, the University of Alabama) ;
  • Lee, Jaejin (Department of Electrical and Computer Engineering and MINT Center, the University of Alabama) ;
  • Lee, Woncheol (Department of Electrical and Computer Engineering and MINT Center, the University of Alabama) ;
  • Choi, Chul-Jin (Korea Institute of Materials Science) ;
  • Xu, Xia (Department of Chemical and Biological Engineering and MINT Center, the University of Alabama) ;
  • Lane, Alan M. (Department of Chemical and Biological Engineering and MINT Center, the University of Alabama)
  • Received : 2013.11.04
  • Accepted : 2014.03.03
  • Published : 2014.03.31

Abstract

We have synthesized ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}/{\alpha}$-phase $Fe_{65}Co_{35}$ composite by annealing a mixture of paramagnetic ${\varepsilon}$-phase $Mn_{54}Al_{46}$ and ferromagnetic ${\alpha}$-phase $Fe_{65}Co_{35}$ particles at $650^{\circ}C$. The volume fraction ($f_h$) of hard ${\tau}$-phase $Mn_{54}Al_{46}$ of the composite was varied from 0 to 1. During the annealing, magnetic phase transformation occurred from paramagnetic ${\varepsilon}$-phase to ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}$. The magnetization and coercivity of the composite monotonically decreased and increased, respectively, as the $f_h$ increased. These results are in good agreement with our proposed composition dependent coercivity and modified magnetization equations.

Keywords

References

  1. M. Sagawa, S. Fujimara, H. Yamamoto, Y. Matsuura, and S. Hirosawa, J. Appl. Phys. 57, 4094 (1985). https://doi.org/10.1063/1.334629
  2. S. Sugimoto, J. Phys. D: Appl. Phys. 44, 064001 (2011). https://doi.org/10.1088/0022-3727/44/6/064001
  3. H. Kono, J. Phys. Soc. Jpn. 13, 1444 (1958). https://doi.org/10.1143/JPSJ.13.1444
  4. A. J. J. Koch, P. Hokkeling, M. G. V. D. Steeg, and K. J. DeVos, J. Appl. Phys. 31, S75 (1960). https://doi.org/10.1063/1.1984610
  5. A. Sakuma, J. Phys. Soc. Jpn. 63, 1422 (1993).
  6. J. H. Park, Y. K. Hong, S. Bae, J. J. Lee, J. Jalli, G. S. Abo, N. Neveu, S. G. Kim, C. J. Choi, and J. G. Lee, J. Appl. Phys. 107, 09A731 (2010). https://doi.org/10.1063/1.3337640
  7. T. Kubo, US Patent 3,976,519 (1976).
  8. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991). https://doi.org/10.1109/20.102931
  9. Y. Liu, A. George, R. Skomski, and D. J. Sellmyer, Appl. Phys. Lett. 99, 172504 (2011). https://doi.org/10.1063/1.3656038
  10. H. Zeng, S. Sun, J. Li, Z. L. Wang, and J. P. Liu, Appl. Phys. Lett. 85, 792 (2004). https://doi.org/10.1063/1.1776632
  11. B. Ma, H. Wang, H. Zhao, C. Sun, R. Acharya, and J. P. Wang, J. Appl. Phys. 109, 083907 (2011). https://doi.org/10.1063/1.3569845
  12. M. Marinescu, J. F. Liu, M. J. Bonder, and G. C. Hadjipanayis, J. Appl. Phys. 103, 07E120 (2008). https://doi.org/10.1063/1.2830956
  13. C. W. Kim, Y. H. Kim, H. G. Cha, J. C. Kim, and Y. S. Kang, Mol. Cryst. Liq. Cryst. 472, 155 (2007).
  14. C. W. Chen, J. Appl. Phys. 32, S348 (1961). https://doi.org/10.1063/1.2000465
  15. G. F. Korznikova, J. Microsc. 239, 239 (2010). https://doi.org/10.1111/j.1365-2818.2010.03372.x
  16. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993). https://doi.org/10.1103/PhysRevB.48.15812
  17. C. Kittel, Rev. Mod. Phys. 21, 541 (1949). https://doi.org/10.1103/RevModPhys.21.541

Cited by

  1. Exchange coupled SrFe12O19/Fe-Co core/shell particles with different shell thickness vol.11, pp.6, 2015, https://doi.org/10.1007/s13391-015-5163-1
  2. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-04632-6
  3. Exchange Coupling in MnAlC/α-Fe Nanocomposite Magnets vol.31, pp.12, 2018, https://doi.org/10.1007/s10948-018-4661-4