DOI QR코드

DOI QR Code

Preparation and Thermal Stability of FeS2 Fine Powder for Thermal Battery

열전지용 FeS2 미세 분말의 제조 및 열적 안정성

  • Choi, Yusong (Convergence Technology Research Directorate, Agency for Defense Development) ;
  • Yu, Hye-Ryeon (Convergence Technology Research Directorate, Agency for Defense Development) ;
  • Cheong, Haewon (Convergence Technology Research Directorate, Agency for Defense Development) ;
  • Cho, Sungbaek (Convergence Technology Research Directorate, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 최유송 (국방과학연구소 국방신기술본부) ;
  • 유혜련 (국방과학연구소 국방신기술본부) ;
  • 정해원 (국방과학연구소 국방신기술본부) ;
  • 조성백 (국방과학연구소 국방신기술본부) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2013.10.03
  • Accepted : 2013.11.21
  • Published : 2014.02.10

Abstract

Microstructure and thermal stability of mechanically ball milled $FeS_2$ were investigated. The average particle size and distribution of $FeS_2$ powder were changed in two steps with the increased ball milling time. The average particle size drastically decreased from $98.4{\mu}m$ to 1.01 and $0.89{\mu}m$ after ball milling of 10 h and 30 h, respectively. However, the distribution was broad and a shoulder appeared at $2{\mu}m$ because the pulverization was still in process at 10 h ball milling. After 60 h ball milling, the distribution became narrower. After ball milling of 120 h, the average particle size increased because of $FeS_2$ particle agglomeration. Therefore, the particle size distribution became broaden again. Finally, after ball milling of 170 h, $FeS_2$ with the narrowest size distribution can be obtained. Thermal stability of $FeS_2$ was unstable as the $FeS_2$ particle was pulverized. Therefore, the activation energy of the fine size particles is 27% lower than that of the as-received $FeS_2$.

$FeS_2$ 미세 입자가 열전지의 특성에 미치는 영향을 알아보고자, 볼밀법을 이용하여 미세화 입자를 제조하고 그 미세구조 및 열안정성을 평가하였다. $FeS_2$의 평균 입자크기와 입자분포는 볼밀 시간에 따라 변하였다. 평균 입자크기는 10 h 볼밀 처리 후, $98.4{\mu}m$에서 $1.01{\mu}m$로 급격하게 감소하였다. 볼밀 시간이 증가할수록, 입자의 응집이 증가하고 입자 크기의 분포가 넓어지기 때문에 평균 입자크기는 증가하였다. 결국, 170 h의 볼밀을 시행한 후에 가장 좁은 크기의 단일 입자 분포를 가지는 $FeS_2$ 미세 입자를 얻을 수 있었다. 한편, 입자가 분쇄됨에 따라 $FeS_2$의 열 안정성은 불안정해졌으며, 미세 입자 사이즈의 활성화 에너지는 이전의 $FeS_2$보다 27% 낮아졌다.

Keywords

References

  1. T. J. Lee, J. D. Lee, and W. C. Chang, A Study on Oxidative Decomposition of Toluene for Control of VOCs Emissions, J. Korean Ind. Eng. Chem., 14, 519-525 (2003).
  2. S. K. Park and H. C. Kim, Reduction of Volatile Organic Compounds Emitted from Automobile Felt by Activated Carbon and Hollow Core/Mesoporous Shell Carbon Ball, Appl. Chem. Eng., 21, 680-683 (2010).
  3. K. W. Chung, J. M. Kim, S. B. Lee, I. K. Hong, and J. D. Lee, Reaction Media (SCF) Effect in VOCs Mixture Decomposition Process, Appl. Chem., 5, 327-330 (2001).
  4. S. W. Kang, H. T. Song, B. H. Min, and S. S. Suh, A study on measurement of mass transfer coefficient with breakthrough curve for benzene, Appl. Chem., 7, 321-324 (2003).
  5. J. S. Hyun, S. H. Lee, Y. J. Rhim, and B. M. Min, A Study on Cyclone Combustion System for Efficient Thermal Oxidation of VOC, Energy Eng. J., 13, 112-117 (2004).
  6. H. J. Lim and T. Y. Kim, Technology of VOCs Removal by using Oxidation Complex Compounds, Prospectives of Industrial Chemistry, 5, 33-38 (2002).
  7. S. S. Kim, C. H. Lee, and S. W. Park, Adsorption Analysis of VOCs of Zeolite Synthesized by Coal Fly Ash in a Fixed-bed Adsorber, Korean Chem. Eng. Res., 48, 784-790 (2010).
  8. H. S. Kim and Y. S. Park, Adsorption Characteristics of Volatile Organic Compounds-BTX on Activated Carbon Fiber, J. KOSAE, 15, 805-812 (1999).
  9. M. W. Jung, K. H. Ahn, Y. H. Lee, K. P. Kim, J. S. Rhee, J. T. Park, and K. J. Paeng, Mircrochem. J., 70, 123-131 (2001). https://doi.org/10.1016/S0026-265X(01)00109-6
  10. X. S. Zhao, Q. Ma, and G. Q. (Max) Lu, VOC Removal : Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon, Energy Fuels, 12, 1051-1054 (1998). https://doi.org/10.1021/ef980113s
  11. K. J. Woo, S. D. Kim, and S. H. Lee, Adsorption Characteristics of Multi-component VOCs Including Poorly Adsorbable Chemicals on Activated Carbonaceous Adsorbents, Korean Chem. Eng. Res., 45, 277-285 (2007).
  12. J. H. Kim, 환경을 위한 재료학적 접근, Ceramist, 10, 259-278 (1995).
  13. C. F. Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends, Towards an order-N DFT method, Theor. Chem. Acc., 99, 391-403 (1998).
  14. N. A. Seaton, J. P. R. B. Walton, and N. Quirke, A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurement, Carbon, 27, 853-861 (1989). https://doi.org/10.1016/0008-6223(89)90035-3
  15. S. J. Park and Y. S. Jang, Effect of micropore filling by silver and anty-bacterial activity of activated carbon fiber surface treated with AgN$O_3$, J. Korean Ind. Eng. Chem., 13, 166-172 (2002).
  16. S. K. Park and H. C. Kim, Cabin Air Filter Media Produced by Needle Punching Process, J. Korean Ind. Eng. Res., 20, 561-564 (2009).
  17. H. H. An, A Study on VOCs Adsorption Propertires Using Fine-fiber, KIGAS, 14, 35-40 (2010).
  18. W. C. Oh, The Properties of Carbonaceous Desiccant Derived from Phenolic Resin, Analytical Science & Technology, 13, 332-337 (2000).
  19. T. W. Kim and H. Moon, Characterization of Industrial Wastewater for Removal of TOC by GAC Adsorption, J. Adv. Eng. Tech., 1, 375-381 (2008).
  20. B. J. Holland and J. N. Hay, The thermal degradation of poly(vinyl alcohol), Polymer, 42, 6775-6783 (2001). https://doi.org/10.1016/S0032-3861(01)00166-5
  21. J. W. Gilman, D. L. VanderHart, and T. Bismaleimides, Thermal Decomposition Chemistry of Poly(vinyl alcohol), Fire and Polymers II : Materials and Test for Hazard, G. L. Nelson, 599, 161-185, American Chemical Society, Washington DC (1995).
  22. S. H. Jhung and J. S. Chang, Adsorption and Storage of Natural Gas by Nanoporous Adsorbents, J. Korean Ind. Eng. Res., 20, 117-125 (2009).
  23. Y. H. Cho, J. G. Na, S. S. Kim, J. G. Kim, and S. H. Chung, Development of a Catalyst/Sorbent for Methane-Steam Reforming, J. Korean Ind. Eng. Chem., 44, 307-313 (2006).

Cited by

  1. ) Particle Sizes on Electrochemical Characteristics of Thermal Batteries vol.25, pp.2, 2014, https://doi.org/10.14478/ace.2013.1123
  2. -MWCNTs composite for thermal batteries vol.100, pp.10, 2017, https://doi.org/10.1111/jace.14991
  3. 4D Lookup Table Interpolating을 이용한 단위 전지 방전 시험 기반 열전지 성능 예측 vol.30, pp.6, 2014, https://doi.org/10.4313/jkem.2017.30.6.393