DOI QR코드

DOI QR Code

Non-isothermal Crystallization Behavior of Poly(glycolide-co-ε-caprolactone-co-L-lactide) Block Copolymer

생체분해성 Poly(glycolide-co-ε-caprolactone-co-L-lactide) 블록 공중합물의 비등온 결정화 거동에 관한 연구

  • 최세영 (청주대학교 응용화학과) ;
  • 송승호 (청주대학교 응용화학과)
  • Received : 2013.11.12
  • Accepted : 2013.12.03
  • Published : 2014.03.31

Abstract

In this work, glycolide, L-lactide and ${\varepsilon}$-caprolactone monomers were polymerized into the triblock copolymers by two step polymerization method and their non-isothermal crystallization behaviors were studied by combination of modified Avrami and Ozawa formula for further analysis of their behaviors. The result showed that PGCLA21 gave the highest value for supercooling analysis and super cooling degree increased with L-lactide content. Crystallization velocity constant, however, showed no significant change. The result of cooling function in specific relative crystallization degree showed that the increase of L-lactide content made an effect on the more enhancement of crystallization velocity of the PGCLA than PGCL. The result of big logF(T) value with the L-lactide content above critical point for PGCLA41 and PGCLA21 showed that bigger cooling velocity needed to gain same crystal size compared with PGCL. This means that it gives negative effect in the increase of crystallization velocity.

본 연구에서는 생체분해성 폴리에스터 계열의 glycolide, L-lactide 및 ${\varepsilon}$-caprolactone 단량체를 이용하여 2단계 중합법에 의한 삼원 공중합체를 제조하여, DSC를 이용한 비등온 결정화 거동을 고찰하였다. 보다 더 정확한 거동을 검토하기 위하여 Avrami 식과 Ozawa 식을 조합하여 비등온 결정화 거동을 고찰하였다. 과냉각도를 분석한 결과 PGCLA21의 값이 가장 큰 값을 보이고 있으며 L-lactide 함량이 증가함에 따라 과냉각도는 증가하는 경향을 보이고 있다. 수정된 Avrami 식을 이용하여 다양한 냉각속도에서 비등온 결정화 거동 결정화 속도 상수는 큰 경향을 보이고 있지 않는 것을 알 수 있었다. Avrami 및 Ozawa 식을 조합하여 특정한 상대적 결정화도에서의 냉각함수를 구한결과 L-lactide 함량이 증가하면서 PGCL과 비교시 결정화 속도를 향상시키는 역할을 하고 있는 것으로 여겨지는 반면 PGCLA41과 PGCLA21을 비교시 L-lactide 함량이 일정 이상 증가시 logF(T) 값이 큰 것을 확인 할 수 있는데 이는 동일한 결정을 얻는데 더 많은 냉각 속도를 필요로 한다는 것을 의미하며 결정화 속도 향상에 부정적인 영향을 미치는 것으로 판단된다.

Keywords

References

  1. Hans R., Kricheldorf and Simon Rost, "A-B-A triblock and multiblock copolyesters prepared from ${\varepsilon}$-caprolactone, glycolide and -lactide by means of bismuth subsalicylate", J. Polym., 46, 3248 (2005). https://doi.org/10.1016/j.polymer.2005.02.004
  2. Joseph Jagur-Grodzinski, " Biomedical application of functional polymers", J. React. Funct. Polym., 39, 99 (1999). https://doi.org/10.1016/S1381-5148(98)00054-6
  3. Albertsson A-C, Karlesson S, editors. Degradable polymers. Macromolecular symposia, 130. Basel: Huthig and Wepf, 1998.
  4. Scholz C, Gross RA, "Polymers from renewable resources biopolyesters and biocatalysis", ACS symposium series, 764, Washington DC: American Chemical Society (2000).
  5. Swapan Kumar Saha and Hideto Tsuji, Effects of molecular-weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactide)s, J. Polym. Degrad. Stab., 91, 1665 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.12.009
  6. E. J. Frazza, E. E. Schmitt, " A new absorbable suture", J. Biomed Mater. Res. Symp., 5, 43 (1971). https://doi.org/10.1002/jbm.820050207
  7. I. Engelberg, J. Kohn, "Physico-mechanical properties of degradable polymers used in medical applacations : a comparative study", J. Biomaterials, 12, 292 (1991). https://doi.org/10.1016/0142-9612(91)90037-B
  8. Y. Ikada, H. Tsuji, "Biodegradable poltesters for medical and ecological application", Macromol. Rapid Commun., 21, 117 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  9. H. Tsuji, in: Y. Doi, A. Steinbuchel (Eds.), Polyesters 3, Biopolymers, 4, 2002.
  10. D. F. Williams, S. P. Zhong, "Biodeterioration/biodegradation of polymeric medical devices in situ", Int. Biodeterior. Biodegradation, 34, 95 (1994). https://doi.org/10.1016/0964-8305(94)90002-7
  11. Jones D. "Pharmaceutical applications of polymers for drug delivery", Rapra Rev Rep, 6, 3 (2004).
  12. Dunn RL. in: Hollinger JO, editor. Biomedical applications of synthetic biodegradable polymers. Boca Raton FL: CRC Press, 1995.
  13. L. S. Nair and C. T. Laurencin, "Biodegradable polymers as biomaterials", Prog Polym Sci., 32, 762 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017
  14. M. Vert, Aliphatic Polyesters: Great Degradable Polymers that Cannot do Everything, Biomacromolecules, 6, 538 (2005). https://doi.org/10.1021/bm0494702
  15. A.-C. Albertsson and I. K. Varma, Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications, Biomacromolecules, 4, 1466 (2003). https://doi.org/10.1021/bm034247a
  16. K. Tomihata, M. Suzuke, T. Oka, and Y. Ikada, "A New Resorbable Monofilament Suture", Polym. Degrad. Stab., 59, 13 (1998). https://doi.org/10.1016/S0141-3910(97)00183-3
  17. R. S. Bezwada, D. D. Jamiolkowski and S. W. Shalaby, "Segmented copolymers of epsilon-caprolactone and glycolide", US Pantent, 5,133,739 (1992).
  18. D. D. Jamiolkowski and S. W. Shalaby, "Surgical articles of copolymers of glycolide and epsilon-caprolactone and methods of producing the same", US Patent 4,700,704 (1987).
  19. S. Y. Choi, M. H. Jee, N. J. Park, S. H. Song, K. C, Choi, D. H, Baik, "Synthesis and Non-isothermal Crystallization Behavior of Poly(glycolide-co-${\varepsilon}$-caprolactone) Block Copolymer", Text Sci Eng, 48, 1 (2011).
  20. M. L. Di Lorenzo and C. Silvestre, "Non-isothermal crystallization of polymers", Prog. Polym. Sci., 24, 917 (1999). https://doi.org/10.1016/S0079-6700(99)00019-2
  21. M. Avrami, "Kinetics of Phase Change. I General Theory", J. Chem. Phys., 7, 1103 (1939). https://doi.org/10.1063/1.1750380
  22. M. Avrami, "Kinetics of Phase Change. II Transformation-Time Relation for Random Distribution of Nuclei", J. Chem. Phys., 8, 212 (1940). https://doi.org/10.1063/1.1750631
  23. M. Avrami, "Granucleation, Phase Change, and Microstructure Kinetics of Phase Change. III", J. Chem. Phys., 9, 177 (1941). https://doi.org/10.1063/1.1750872
  24. T. Ozawa, "Kinetics of non-isothermal crystallization", Polymer, 12, 150 (1971). https://doi.org/10.1016/0032-3861(71)90041-3
  25. W. Dietz,"Spharolithwachstum in Polymeren", Colloid Polym. Sci., 259, 413(1981). https://doi.org/10.1007/BF01524878
  26. G. Allegra, R. H. Marchessault, S. Bloembergen, "Crystallization of markoffian copolymers", J. Polym. Sci. B: Polym. Phys., 30, 809 (1992). https://doi.org/10.1002/polb.1992.090300803
  27. D. H. Baik, Y. K. Jeong, "Application of Macrokinetic Equation to Polymer Crystallization during Fiber Formation", J. Kor. Fiber Soc., 33, 67 (1996).
  28. Pitt Supaphol, Nujalee Dangseeyun and Phornphon Srimoaon, "Non-isothermal melt crystallization kinetics for poly(trimethylene terepthalate)/poly(butylene terephthalate) blends", J. Polym. Test., 23, 187 (2004). https://doi.org/10.1016/S0142-9418(03)00079-5
  29. C. R. Herrero, J. L. Acosta, "Effect of poly(epichlorohydrin) on the crystallization and Compatibility Behavior of Poly(ethylene oxide)/Polyphosphazene Blends", Polym. J., 26, 786 (1994) https://doi.org/10.1295/polymj.26.786
  30. P. Cebe, Polym. "Non-isothermal crystallization of poly (etheretherketone) aromatic polymer composite", Composites, 9, 271 (1988)
  31. Mitchell, C. A. and Krishnamoorti. R., J. "Nonisothermal Crystallization Kinetics of in-situ Polymerized Poly(${\varepsilon}$-caprolactone) Functionalized-SWNT Nanocomposites", Polymer, 46, 8796 (2005). https://doi.org/10.1016/j.polymer.2005.05.101
  32. Li. L., Li. C. Y., Ni. C., Rong. L. and Hsiao B., "Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents", Polymer, 48, 3452 (2007). https://doi.org/10.1016/j.polymer.2007.04.030
  33. Liu, Q., Peng. Z. and Chen. D., "Nonisothermal crystallization behavior of poly(${\varepsilon}$-caprolactone)/attapulgite nanocomposites by DSC analysis", Polym. Eng. Sci, 47, 460 (2007). https://doi.org/10.1002/pen.20704
  34. A. N. Kolmogoroff, "Zur Statistik der Kristallisationsvorgange in Metallen", Izv. Akad. Nauk. SSSR Ser, Math., 3, 355 (1937)
  35. U. R. Evans, "The laws of expending circles and spheres in relation to the lateral growth of surface films and grain-size of metals", Trans. Faraday Soc., 41, 365 (1945) https://doi.org/10.1039/tf9454100365
  36. T. X. Liu, Z. S. Mo, S. E. Wang and H. F. Zhang, "Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ketone)", Polym. Eng. Sci., 37, 568 (1997) https://doi.org/10.1002/pen.11700