DOI QR코드

DOI QR Code

ON SUPERLINEAR p(x)-LAPLACIAN-LIKE PROBLEM WITHOUT AMBROSETTI AND RABINOWITZ CONDITION

  • Bin, Ge (Department of Applied Mathematics Harbin Engineering University)
  • Received : 2012.07.31
  • Published : 2014.03.31

Abstract

This paper deals with the superlinear elliptic problem without Ambrosetti and Rabinowitz type growth condition of the form: $$\{-div\((1+\frac{|{\nabla}u|^{p(x)}}{\sqrt{1+|{\nabla}u|^{2p(x)}}}})|{\nabla}u|^{p(x)-2}{\nabla}u\)={\lambda}f(x,u)\;a.e.\;in\;{\Omega}\\u=0,\;on\;{\partial}{\Omega}$$ where ${\Omega}{\subset}R^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\lambda}$ > 0 is a parameter. The purpose of this paper is to obtain the existence results of nontrivial solutions for every parameter ${\lambda}$. Firstly, by using the mountain pass theorem a nontrivial solution is constructed for almost every parameter ${\lambda}$ > 0. Then we consider the continuation of the solutions. Our results are a generalization of that of Manuela Rodrigues.

Keywords

References

  1. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
  2. Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
  3. L. Diening, Riesz potential and Sobolev embedding on generalized Lebesque and Sobolev space $L^{p({\cdot})}$ and $W^{k,p({\cdot})}$, Math. Nachr. 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157
  4. D. E. Edmunds and J. Rakosnic, Sobolev embbeding with variable exponent II, Math. Nachr. 246/247 (2002), 53-67. https://doi.org/10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
  5. X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  6. X. L. Fan and D. Zhao, On the generalized Orlicz-Sobolev spaces $W^{k,p(x)}({\Omega})$, J. Gansu Educ. College 12 (1998), no. 1, 1-6.
  7. X. L. Fan and D. Zhao, On the space $L^{p(x)}({\Omega})$ and $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617
  8. X. L. Fan, Y. Z. Zhao, and D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}({\Omega})$, J. Math. Anal. Appl. 255 (2001), no. 1, 333-348. https://doi.org/10.1006/jmaa.2000.7266
  9. C. Ji, On the superlinear problem involving the p(x)-Laplacian, Electron. J. Qual. Theory Differ. 40 (2011), 1-9.
  10. O. Kovacik and J. Rakosuik, On spaces $L^{p(x)}({\Omega})$ and $W^{k,p(x)}({\Omega})$, Czechoslovak Math. J. 41 (1991), no. 4, 592-618.
  11. M. M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr. J. Math. 9 (2012), no. 1, 211-222. https://doi.org/10.1007/s00009-011-0115-y
  12. M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
  13. M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109-121.
  14. G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr. 233/234 (2002), 221-236. https://doi.org/10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO;2-D

Cited by

  1. Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions 2018, https://doi.org/10.1007/s10884-016-9542-6