DOI QR코드

DOI QR Code

Optimal Operating Points on the Organic Rankine Cycle to Efficiently Regenerate Renewable Fluctuating Heat Sources

신재생에너지 가변열원의 효율적 이용을 위한 유기랭킨 사이클 최적작동점에 관한 연구

  • 조수용 (경상대학교 항공기부품기술연구센터, 항공공학과) ;
  • 조종현 ((주)선테크 기술연구소)
  • Received : 2013.11.14
  • Accepted : 2014.03.11
  • Published : 2014.03.25

Abstract

Organic Rankine cycle (ORC) has been widely used to convert renewable energy such as solar energy, geothermal energy, or waste energy etc., to electric power. For a small scale output power less than 10 kW, turbo-expander is not widely used than positive displacement expander. However, the turbo-expander has merits that it can operate well at off-design points. Usually, the available thermal energy for a small scale ORC is not supplied continuously. So, the mass flowrate should be adjusted in the expander to maintain the cycle. In this study, nozzles was adopted as stator to control the mass flowrate, and radial-type turbine was used as expander. The turbine operated at partial admission. R245fa was adopted as working fluid, and supersonic nozzle was designed to get the supersonic flow at the nozzle exit. When the inlet operating condition of the working fluid was varied corresponding to the fluctuation of the available thermal energy, optimal operating condition was investigated at off-design due to the variation of mass flowrate.

Keywords

References

  1. Veleza, F., Segoviab, J. J., Martin, M. C., Antolina, G., Chejnec, F. and Quijanoa, A., 2012, "A Technical, Economical and Market Review of Organic Rankine Cycles for the Conversion of Low-Grade Heat for Power Generation", Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4175-4189. https://doi.org/10.1016/j.rser.2012.03.022
  2. Chen, H., Goswami, D. Y. and Stefanakos, E. K., 2010, "A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat", Renewable and Sustainable Energy Reviews, Vol. 14, pp. 3059-3067. https://doi.org/10.1016/j.rser.2010.07.006
  3. Tchanche, B. F., Papadakis, G., Lambrinos, G. and Frangoudakis, A., 2009, "Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle", Applied Thermal Engineering, Vol. 29, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  4. Cong, C. E., 2005, "Solar Thermal Organic Rankine Cycle as a Renewable Energy Option", Jurnal Mekanikal, Dec., No. 20, pp. 68-77.
  5. Gang, P., Jing, L. and Jie, J., 2010, "Analysis of Low Temperature Solar Thermal Electric Generation Using Regenerative Organic Rankine Cycle", Applied Thermal Engineering, Vol. 30, pp. 998-1004. https://doi.org/10.1016/j.applthermaleng.2010.01.011
  6. Wang, X. D., Zhao, L., Wang, J. L., Zhang, W. Z. Zhao, X. Z. and Wu, W., 2010, "Performance Evaluation of a Low-Temperature Solar Rankine Cycle System Utilizing R245fa", Solar Energy, Vol. 84, pp. 353-364. https://doi.org/10.1016/j.solener.2009.11.004
  7. Nguyen, V. M., Doherty, P. S. and Riffat, S. B., 2001, "Development of a prototype low-temperature Rankine cycle electricity generation system", Applied Thermal Engineering, Vol. 21, pp. 169-181. https://doi.org/10.1016/S1359-4311(00)00052-1
  8. Riffat, S. B. and Zhao, X., 2004, "A Novel Hybrid Heat-Pipe Solar Collector/CHP System-Part II: Theoretical and Experimental Investigations", Renewable Energy, Vol. 29, pp. 1965-1990. https://doi.org/10.1016/j.renene.2004.03.018
  9. Agustin M. D. and Lourdes G. R., 2010, "Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle", "Energy Conversion and Management, Vol. 51, pp. 2846-2856. https://doi.org/10.1016/j.enconman.2010.06.022
  10. Manolakos, D., Kosmadakis, G., Kyritsis, S. and Papadakis, G., 2009, "Identification of Behaviour and Evaluation of Performance of Small Scale, Low-Temperature Organic Rankine Cycle System Coupled with a RO Desalination Unit", Energy Vol. 34, pp. 767-774. https://doi.org/10.1016/j.energy.2009.02.008
  11. Tchanche, B. F., Lambrinos, Gr., Frangoudakis, A. and Papadakis, G., 2010, "Exergy analysis of Micro-Organic Rankine Power Cycles for a Small Scale Solar Driven Reverse Osmosis Desalination Dystem", Applied Energy, Vol. 87, pp. 1295-1306. https://doi.org/10.1016/j.apenergy.2009.07.011
  12. Liu B. T., Chie, K. H. and Wang, C. H., 2004, "Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery", Energy, Vol. 29, pp. 1207-1217. https://doi.org/10.1016/j.energy.2004.01.004
  13. Hung T. C., Shai, T. Y. and Wang, S. K., 1997, "A Review of Organic Rankine Cycles for the Recovery of Low-Grade Waste Heat", Energy, Vol. 22, No. 7, pp. 661-667. https://doi.org/10.1016/S0360-5442(96)00165-X
  14. Hung, T. C., Wang, S. K, Kuo, C. H., Pei, B. S. and Tsai, K. F., 2010, "A Study of Organic Working Fluids on System Efficiency of an ORC Using Low-Grade Energy Sources", Energy, Vol. 35, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  15. Wei, D., Lu, X., Lu, Z. and Gu, J., 2007, "Performance Analysis and Optimization of Organic Rankine Cycle (ORC) for Waste Heat Recovery", Energy Conversion and Management, Vol. 48, pp. 1113-1119. https://doi.org/10.1016/j.enconman.2006.10.020
  16. Navarro-Esbri, J. Peris, B. Collado, R. and Moles, F., 2013, :Micro-Generation and Micro Combined Heat and Power Generation Using "Free" Low Temperature Heat Sources through Organic Rankine Cycles", International Conference on Renewable Energies and Power Quality (ICREPQ'13), Bilbao (Spain), 20th to 22th March, 2013.
  17. Declaye, S., Quoilin, S. and Lemort, V., 2010, "Design of Experimental Investigation of a Small Scale Organic Rankine Cycle Using a Scroll Expander", International Refrigeration and Air Conditioning Conference, Paper 1153, pp. 1-7.
  18. Lemort, V. Quoilin, S. Cuevas, C. and Lebrun, J., 2009, "Testing and Modeling a Scroll Expander Integrated into an Organic Rankine Cycle", Applied Thermal Engineering, Vol. 29, pp. 3094-3102. https://doi.org/10.1016/j.applthermaleng.2009.04.013
  19. Lemort, V., Declaye, S. and Quoilin, S., 2012, "Experimental Characterization of a Hermetic Scroll Expander for use in a Micro-Scale Rankine Cycle, Proc. IMechE Part A: J. Power and Energy, Vol. 228, No. 1, pp. 126-136.
  20. Quoilin, S., Lemort, V. and Lebrun, J., 2010, "Experimental Study and Modeling of an Organic Rankine Cycle Using Scroll Expander", Applied Energy, Vol. 87, pp. 1260-1268. https://doi.org/10.1016/j.apenergy.2009.06.026
  21. Yamada, N. Watanabe, M. and Hoshi, A., 2013, "Experiment on Pumpless Rankine-Type Cycle with Scroll Expander", Energy, Vol. 49, pp. 137-145. https://doi.org/10.1016/j.energy.2012.10.027
  22. Twomey, B., Jacobs, P. A. and Gurgenci, H., 2013, "Dynamic Performance Estimation of Small-Scale Solar Cogeneration with an Organic Rankine Cycle Using a Scroll Expander", Applied Thermal Engineering, Vol. 51, pp. 1307-1316. https://doi.org/10.1016/j.applthermaleng.2012.06.054
  23. Yamamoto, T., Furuhata, T., Arai, N. and Mori, K., 2001, "Design and Testing of the Organic Rankine Cycle", Energy, Vol. 26, pp. 239-251. https://doi.org/10.1016/S0360-5442(00)00063-3
  24. Welch, P. and Boyle, P., 2009, "New Turbines to Enable Efficient Geothermal Power Plants", GRC Transactions, Vol. 33, pp. 765-772.
  25. Kang, S. H., 2012, "Design and Experimental Study of ORC and Radial Turbine using R245fa Working Fluid", Energy, Vol. 41, pp. 514-524. https://doi.org/10.1016/j.energy.2012.02.035
  26. Cho, S. Y., Cho, C. H. and Kim, J, H., 2013, "A Study on the Organic Rankine Cycle using R245fa", J. of Fluid Machinery, Vol. 16, No. 3, pp. 10-17.
  27. Pei, G., Li, J., Li, Y., Wang, D. and Ji, J., 2011, "Construction and Dynamic Test of a Small-Scale Organic Rankine Cycle", Energy, Vol. 36, pp. 3215-3223. https://doi.org/10.1016/j.energy.2011.03.010
  28. NIST, 2010, "Reference Fluid Thermodynamics and Transport Properties", Refprop version 9.0.
  29. Fang, X., Xua, Y. and Zhou, Z., 2011, "New Correlations of Single-Phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-Phase Friction Factor Correlations, Nuclear Engineering and Design, Vol. 241, No. 3, pp. 897-902. https://doi.org/10.1016/j.nucengdes.2010.12.019
  30. Verneau, A., 1987, "Supersonic Turbines for Organic Fluid Rankine Cycles from 3 kW to 1300 kW", VKI Lecture Series 1987-09.
  31. Cho. S. Y., Cho, C. H. and Kim, C., 2006, "Performance Prediction on a Partially Admitted Small Axial-type Turbine", JSME international J. Series B, Vol. 49, No. 4, pp. 1290-1297. https://doi.org/10.1299/jsmeb.49.1290
  32. Rohlik, H. E., "Radial-Inflow turbines", 1973, Turbine Design and Application, Vol. 2, NASA SP-290.
  33. Cho, S. Y., Cho, C. H. and Kim, C., 2008, "Performance Characteristics of a Turbo Expander Substituted for Expansion Valve on Air-conditioner", Experimental Thermal and Fluid Science, Vol. 32, pp. 1655-1665. https://doi.org/10.1016/j.expthermflusci.2008.05.007
  34. Zucrow, M. J. and Hoffman, J. D. 1976, Gas Dynamics, Vol. 1,2 John Wiley & Sons Inc.
  35. Martensen, M. C., 1990, Design and Analysis of a Parallel Flow Nozzle, M.S thesis Mississippi State Univ.
  36. Hodge, B. K. and Koenig, K., 1995, "Compressible Fluid Dynamics", Prentice hall.
  37. Elliott, D. G. and Weinberg, E., 1968, "Acceleration of Liquids in Two-Phase Nozzles", Jet 666 Propulsion Laboratory, Technical Report 32-987.
  38. Elliott, D. G., 1982, "Theory and Tests of Two-Phase Turbines", Jet Propulsion 668 Laboratory, DOE/ER-10614-1, JPL Pub B1-105.
  39. Fluent, 2011, "Ansys Fluent Ver. 14", ANSYS Inc.

Cited by

  1. 저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구 vol.10, pp.4, 2014, https://doi.org/10.7849/ksnre.2014.10.4.036