DOI QR코드

DOI QR Code

Development of a High-Speed Endoscopic OCT System and Its Application to Three-Dimensional Intravascular Imaging in Vivo

고속 내시경적 OFDI 시스템 개발과 이를 이용한 3차원 생체 혈관 내부 이미징

  • 조한샘 (한국과학기술원 기계공학과) ;
  • 장선주 (한국과학기술원 기계공학과) ;
  • 오왕열 (한국과학기술원 기계공학과)
  • Received : 2014.02.28
  • Accepted : 2014.04.04
  • Published : 2014.04.25

Abstract

Intravascular optical coherence tomography (OCT) enables imaging of the three-dimensional (3D) microstructure of a blood vessel wall. While 3D vascular visualization provides detailed information of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the imaging resolution of the system has limited true high-resolution 3D imaging. In this paper we demonstrate high-speed intravascular OCT in vivo, acquiring images at a rate of 350 frames per second. A 47-mm-long rabbit aorta was imaged in 3.7 seconds, after a short flush with contrast agent. The longitudinal imaging pitch was 34 micrometers, comparable to the transverse imaging resolution of the system. Three-dimensional volume rendering showed greatly enhanced visualization of tissue microstructure and stent struts, relative to what is provided by conventional intravascular imaging speeds.

혈관 내 OCT (optical coherence tomography) 는 혈관 벽 내부의 3차원적 미세구조를 영상화할 수 있어서 임상에서 각광을 받고 있다. 하지만 아직도 충분하지 못한 이미징 속도, 특히 내시경 프로브의 이미징 광 스캐닝 속도의 부족으로 혈관 길이 방향의 이미징 간격이 실제 시스템의 광학적 해상도보다 5배 이상 커서 혈관 종방향으로의 고해상도 이미징이 얻어지지 못하고 있는 상황이다. 본 논문에서는 초당 350장의 혈관 벽 단층 영상을 제공하는 고속 혈관 내 OCT 시스템을 기술한다. 본 시스템과 내시경 장치를 이용하여 47 mm 길이의 살아있는 토끼 대동맥을 3.7초만에 34 micron의 혈관 종방향 간격으로 얻는데 성공하였다. 34 micron의 종방향 간격은 실제 내시경의 그 방향 광학적 해상도와 비슷한 정도로서 3차원 모든 방향으로의 고해상도 이미징을 구현하였음을 보여준다. 얻어진 이미징 데이터의 3차원 영상 구현을 통해 혈관의 미세구조 및 이미징 전 삽입된 스텐트의 자세한 구조를 보였다.

Keywords

References

  1. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound," J. Am. Coll, Cardiol. 39, 604-609 (2002). https://doi.org/10.1016/S0735-1097(01)01799-5
  2. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, "Characterization of human atherosclerosis by optical coherence tomography," Circulation 106, 1640-1645 (2002). https://doi.org/10.1161/01.CIR.0000029927.92825.F6
  3. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). https://doi.org/10.1364/OE.11.000889
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). https://doi.org/10.1364/OE.11.002183
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). https://doi.org/10.1364/OL.28.002067
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftima, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
  7. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006). https://doi.org/10.1038/nm1450
  8. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, "Threedimensional coronary artery microscopy by intracoronary optical frequency domain imaging," JACC Cardiovasc. Imag. 1, 752-761 (2008). https://doi.org/10.1016/j.jcmg.2008.06.007
  9. V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, and G. van Bochove, "Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: The potential for clinical application," Eur. Heart J. 34, 875-885 (2013). https://doi.org/10.1093/eurheartj/ehr409
  10. T. Okamura, Y. Onuma, H. Garcia-Garcia, R. van Geuns, J. Wykrzykowska, C. Schultz, W. van der Giessen, J. Ligthart, E. Regar, and P. Serruys, "First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: A comparison with intravascular ultrasound and quantitative coronary angiography," EuroIntervention 6, 1037-1045 (2011). https://doi.org/10.4244/EIJV6I9A182
  11. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. W. van der Steen, R. Huber, and G. van Soest, "Intravascular optical coherence tomography imaging at 3200 frames per second," Opt. Lett. 38, 1715- 1717 (2013). https://doi.org/10.1364/OL.38.001715
  12. H. S. Cho, S. J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W. Y. Oh, "High frame-rate intravascular optical frequency-domain imaging in vivo," Biomed. Opt. Express 5, 223-232 (2014). https://doi.org/10.1364/BOE.5.000223
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). https://doi.org/10.1364/OPEX.12.004822