DOI QR코드

DOI QR Code

A Study on Body Condition by Habitat in Larvae Korea Salamander

서식지 특성에 따른 한국산 도롱뇽 유생의 body condition에 관한 연구

  • Kim, Eun Ji (Department of Convergence Science, Sahmyook University) ;
  • Chung, Hoon (Department of Animal Resource, Sahmyook University)
  • 김은지 (삼육대학교 대학원 융합과학과) ;
  • 정훈 (삼육대학교 동물자원학과)
  • Received : 2013.10.12
  • Accepted : 2014.03.05
  • Published : 2014.03.31

Abstract

Scientific study has investigated the body condition differences by habitat characteristics in larvae Korea salamander (Hynobius leechii) from March to April in 2012. To examine the sensitivity of external environment (predation risk), we divided two groups according to habitat characteristic; 1) Permanent pond and 2) Temporary pond. Howere, each larva was measured by head width at the level of the eye (HWE), largest head width (LHW) and snout-vent length, and we calculated the ratio of the head size by dividing HWE/LHW. As a result, larvae were larger in permanent pond group, had a faster growth rate than in temporary pond group. When exposed to the predator, larvae in permanent pond were smaller HWE/LHW than larvae in permanent pond. Therefore, these results indicate larvae in temporary pond more sensitive to the external environment.

본 연구는 서식지 특성에 따른 양서류 유생의 몸상태 변화를 알아보기 위하여 2012년 3월부터 4월까지 한국산 도롱뇽 유생을 대상으로 진행되었다. 우리는 물이 마를 위험이 없는 서식지와 물이 마를 위험이 있는 서식지로 나누어, 유생의 성장과 외부요인에 대한 민감도에 대하여 알아 보았다. 부화 10일 후, 각 유생의 머리에서 눈이 위치한 부분의 넓이(HWE)와 머리에서 제일 넓은 곳의 길이(LHW)와 코끝부터 항문까지의 길이(SVL)를 측정하였으며, 폴리페니즘을 알아 보기 위하여 HWE/LHW의 비율을 사용하여 분석하였다. 물이 마를 위험이 없는 서식지의 유생은 물이 마를 위험이 있는 서식지의 유생보다 큰 SVL를 가지고 태어났으며, 이후의 성장률도 더 빨랐다. 또한 같은 포식자에게 노출되었을 때, 물이 마를 위험이 없는 서식지 유생은 물이 마를 위험이 있는 서식지 유생보다 HWE/LHW가 더 작게 나타났다. 따라서 물이 마를 위험이 있는 서식지 유생은 물이 마를 위험이 없는 서식지 유생보다 외부요인에 대하여 더 민감하게 반응하는 것을 알 수 있었다.

Keywords

References

  1. Alford RA. 1999. Ecology: Resource Use, Competition, and Predation. pp. 240-278. In Tadpoles: The Biology of Anuran Larvae (McDiarmud RW and R Altig eds.). The University of Chicago Press. Chicago.
  2. Griffrths RA. 1991. Competition between common frog, Rana temporaria, and natterjack toad, Bufo calamita, tadpoles: the effect of competitor density and interaction level on tadpole development. Oikos 61:187-196. https://doi.org/10.2307/3545336
  3. Hoffman EA, and DW Pfennig. 1999. Proximate causes of cannibalistic polyphenism in larval tiger salamander. Ecology 80:1076-1080. https://doi.org/10.1890/0012-9658(1999)080[1076:PCOCPI]2.0.CO;2
  4. Hwang JH and H Chung. 2010. The different polyphenism by the level of predation risk and Habitat in larval salamander, Hynobius ieechii. Korean J. Environ. Ecol. 24:744-750.
  5. Kim EJ, JH Hwang and H Chung. 2012. Phenotypic difference by the indirect cannibalism in larvae of the salamander, Hynobius leechii. Korean J. Environ. Ecol. 26:342-347.
  6. Koskela P. 1973. Duration of the larval stage, growth, and migration in Rana temporaria L. in two ponds in northern Finland in relation to environmental factors. Ann. Zool. Fennici. 10:414-418.
  7. Kupferberg SJ, JC Marks and ME Power. 1994. Effects of variation in natural algal and detrital diets on larval anuran (HyIa regilla) life-history traits. Copeia 1994:446-457. https://doi.org/10.2307/1446992
  8. Laurma A. 1998. Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21:484-494. https://doi.org/10.1111/j.1600-0587.1998.tb00440.x
  9. Loman J. 1999. Early metamorphosis in common frog Rana temporaria tadpoles at risk of drying: an experimental demonstration. Amphibia-Reptilia 20:421-430. https://doi.org/10.1163/156853899X00466
  10. Merila J, A Lauria, M Pahkala, K Rasanen and AT Laugen. 2000. Adaptive phenotypic plasticity in timing of metamorphosis in the common frog Rana temporaria. Ecoscience 7:18-24. https://doi.org/10.1080/11956860.2000.11682566
  11. Michimae H and M Wakahara. 2001. Factors whitch the occurrence of cannibalism and the broad-headed 'cannibal' morph in larvas of the salamander Hynibius retardatus. Behav. Ecol. Sociobiol. 50:339-345. https://doi.org/10.1007/s002650100368
  12. Michimae H and M Wakahara. 2002. A tadpole-induced polyphenism in salamander Hybobus Retardatus. Evolution 56: 2029-2038. https://doi.org/10.1111/j.0014-3820.2002.tb00129.x
  13. Morin PJ. 1983. Predation, competition, and the composition of larval anuran guilds. Ecol. Monogr. 53:119-138. https://doi.org/10.2307/1942491
  14. Newman RA. 1992. Adaptive plasticity in amphibian metamorphosis. Bioscience 42:671-678. https://doi.org/10.2307/1312173
  15. Nishihara A. 1996. Effects of density on growth of head size in larvae of the salamander Hynobius retardatus. Copeia 1996: 478-483. https://doi.org/10.2307/1446871
  16. Patterson NW and AJ McLachlan. 1989. Larval habitat duration and size at metamorphosis in frogs. Hydrobiologia 171:121-126. https://doi.org/10.1007/BF00008172
  17. Schlichting CD and M Pigliucci. 1998. Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland, Massachachusetts, U.S.A.
  18. Seale DB. 1987. Amphibia. pp. 467-552. In Animal energetics. Vol. 2 (Pandian TJ and EJ Vernberg eds.). Academic Press. New York.
  19. Smith-Gill SJ and KA Berven. 1979. Predicting amphibian metamorphosis. Amer. Nat. 113:563-585. https://doi.org/10.1086/283413
  20. Starrett PH. 1973. Evolutionary patterns in larval morphology. pp. 251-271. In Evolutionary biology of the anurans. Contemporary research on major problems (Vial JL ed.). University of Missouri Press. Columbia.
  21. Tejedo M and R Reques. 1994a. Plasticity in metamorphic traits of natterjack tadpoles: the interactive effects of density and pond duration. Oikos 71:295-304. https://doi.org/10.2307/3546278
  22. Tejedo M and R Rwques. 1994b. Does larval growth history determine the timing of metamorphosis in anurans; a field experiment. Herpetologica 50:113-118.
  23. Wellborn GA, DK Skelly and EE Werner. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Ann. Rev. Ecol. Syst. 27:337-363. https://doi.org/10.1146/annurev.ecolsys.27.1.337
  24. West-Eberhard MJ. 1989. Phenotypic plasticity and the origins of diversity. Ann. Rev. Ecol. Syst. 20:249-278. https://doi.org/10.1146/annurev.es.20.110189.001341
  25. West-Eberhard MJ. 1992. Behavior and evolution. pp. 57-75. In Molds, Molecules and metazoan: Growing points in evolutionary biology (Grant PR and HS Horn eds.). Princeton University Press. Prinseton.
  26. Wilbur HM and JE Collins. 1973. Ecological aspects of amphibian metamorphosis. Science 182:1305-1314. https://doi.org/10.1126/science.182.4119.1305
  27. Wilbur HM. 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology 68: 1437-1452. https://doi.org/10.2307/1939227
  28. Woodward BD. 1982. Tadpole competition in a desert anuran community. Oecologia 54:96-100. https://doi.org/10.1007/BF00541115
  29. Woodward BD. 1983. Predator-prey interactions and breeding pond use of temporary-pond species in a desert anuran community. Ecology 64:1549-1555. https://doi.org/10.2307/1937509
  30. Yoon IB, SJ Lee and SY Yang. 1996. The Study on Prey Resource and Life History of Hynobius leechii Boulenger and Onychodatylus Fischeri Boulenger. Korean J. Environ. Biol. 14:195-203.