DOI QR코드

DOI QR Code

Physicochemical Properties of Citrus Hallabong Granules

한라봉 감귤 과립의 물리화학적 특성

  • Lee, Chung-Woo (Dept. of Food Bioengineering, Jeju National University) ;
  • Kim, Mi-Bo (Dept. of Biomaterials Science and Engineering, Yonsei University) ;
  • Oh, Young-Ju (Dept. of Hotel Culinary Arts, Cheju Halla University) ;
  • Lim, Sang-Bin (Dept. of Food Bioengineering, Jeju National University)
  • 이충우 (제주대학교 식품생명공학과) ;
  • 김미보 (연세대학교 생물소재공학과) ;
  • 오영주 (제주한라대학교 호텔조리과) ;
  • 임상빈 (제주대학교 식품생명공학과)
  • Received : 2013.12.30
  • Accepted : 2014.02.12
  • Published : 2014.04.30

Abstract

Three different granule powders of Citrus Hallabong were prepared with different ratios of fresh juice and citric acid (J10C3=10.0:3.08, J08C4=8.75:4.33, J07C5=7.5:5.58) at fixed quantities of juice powder (70%), pressed cake powder (10%), and additives (6.92%), and their physicochemical properties were measured and compared with targeted commercial product (CP). The moisture content of Hallabong granules (HG) was 5.08~5.44% (w/w), which was two times higher than that of CP. Titratable acidities increased with higher citric acid content and were 1.7~2.3 times lower in HG compared to that of CP. Soluble solids of HG increased with higher citrus juice content ($90{\sim}98^{\circ}Brix$) and were slightly lower than that of CP. Vitamin C contents of HG increased with higher citrus juice content and were 5.8~7.6 times lower than that of CP. In terms of color difference, L and b values of HG were higher while a value was lower than those of CP. Bulk and compaction densities of HG were 0.541~0.660 g/mL and 0.561~0.689 g/mL, respectively and were similar to those of CP. Water solubility and swelling capacity were 66.6~72.0% and 3.84~6.40 g/g, respectively, and were similar to those of CP. Hygroscopicity of HG after an hour of elapsed time was 1.6~1.8 times higher than that of CP. Sensory evaluation test showed that color, sweetness, and overall acceptance of HG were not significantly different from those of CP, whereas flavor and bitterness of HG were lower than those of CP. In conclusion, convenient food granules could be made with Citrus Hallabong juice and pressed cake, which is similar to the commercial product.

한라봉 감귤을 이용한 가공제품의 다양화 방안으로 감귤을 건조한 후 분말 과립화하여 간편 편의식품을 제조하기 위하여, 한라봉 감귤 주스 분말 70%, 착즙박 분말 10%, 첨가물 6.92%로 고정하였고, 한라봉 감귤 주스와 구연산의 비율 (J10C3=10.0:3.08, J08C4=8.75:4.33, J07C5=7.5:5.58)을 달리하여 세 가지 과립을 제조한 후 물리화학적 특성과 유동성을 측정하여 시판 제품과 비교하였다. 수분 함량은 5.08~5.44%로 시료 간 유의적인 차이는 없었으나, 대조구인 시판 제품에 비해 약 2배 높았다. 적정산도는 4.35~5.88%로 구연산의 첨가량이 많을수록 유의적으로 증가하였으며, 시판 제품에 비해 약 1.7~2.3배 낮았다. 당도는 $90{\sim}98^{\circ}Brix$로 감귤 주스의 첨가량이 많을수록 유의적으로 증가하였으며 시판 제품에 비하여 다소 낮은 값을 보였다. 비타민 C 함량은 1.22~1.60 g/100 g으로 감귤 주스의 첨가량이 많을수록 높았으며, 시판 제품에 비하여 약 5.8~7.6배 낮았다. 색도는 시판 제품에 비하여 L값과 b값에서는 높았지만 a값은 낮았다. 겉보기 밀도는 0.541~0.660 g/mL로 한라봉 감귤 주스의 첨가량이 높을수록 감소하였으며, 시판 제품과 유사하였다. 다짐 밀도는 0.561~0.689 g/mL로 구연산 첨가량의 증가에 따라 증가하였으며, 시판 제품과 유사한 경향을 나타내었다. 물에 대한 용해도는 66.6~72.0%이었고, 물에 의한 팽윤력은 3.84~6.40 g/g으로 시판 제품과 유사하였다. 한 시간 경과 후 흡습량은 시판 제품에 비하여 1.6~1.8배 높았다. 관능검사 결과 시제품은 색, 단맛, 전체적인 기호도에 있어서는 시판 제품과 유의적인 차이를 나타내지 않았지만, 향과 쓴맛에 있어서는 유의적으로 기호도가 낮았다. 결론적으로 한라봉 감귤 유동층 건조 주스 분말과 동결건조 착즙박 분말을 이용하여 시중에서 판매되고 있는 과립 타입의 유사한 제품화가 가능할 것으로 추정되었다.

Keywords

References

  1. Kang SG, Kang JH, Ko JW, Kim KS, Kim IJ, Kim CS, Moon YI, Park YC, Park JH, Yoon SH, Han SH. 2008. Citrus varieties. Subtropical Agric Biotechnol Jeju National University 24: 89-93.
  2. Song HS, Park YH, Moon DG. 2005. Volatile flavor properties of Hallabong grown in open field and green house by GC/GC-MS and sensory evaluation. J Korean Soc Food Sci Nutr 34: 1239-1245. https://doi.org/10.3746/jkfn.2005.34.8.1239
  3. Kim HS, Lee SH, Koh JS. 2006. Physicochemical properties of Hallabong Tangor (Citrus Kiyomi${\times}$ponkan) cultivated with heating. Korean J Food Preserv 13: 611-615.
  4. Jeju Special Self-Governing Province Citrus Marketing and Shipping Association. 2013. Citrus marketing and merchandising analysis. Shinmyung Press, Jeju, Korea. p 24.
  5. Lee SH, Kim HS, Cho SW, Lee JS, Koh JS. 2006. Quality properties of Hallabong Tangor (Citrus Kiyomi${\times}$ponkan) cultivated with heating. Korean J Food Preserv 13: 538-542.
  6. Oh YJ. 2010. Development of industrial processing technology for Hallabong. Rural Development Administration Research Report. Korea. p 59-87.
  7. Srinivasakannan C, Balasubramanian N. 2008. An analysis on modeling of fluidized bed drying of granular material. Adv Powder Technol 19: 73-82. https://doi.org/10.1163/156855208X291774
  8. Lee GH. 2006. Study on the drying characteristics of agricultural products during fluidized bed drying -Drying characteristics of green onion and onion during fluidized bed drying-. J Biosystems Eng 31: 416-422. https://doi.org/10.5307/JBE.2006.31.5.416
  9. AOAC. 1995. Official method of analysis of AOAC Intl. 16th ed. Association of Official Analytical Chemists, Arlington, VA, USA. Method 934.06, 942.15.
  10. Rizzolo A, Forni E, Polesello A. 1984. HPLC assay of ascorbic acid in fresh and processed fruit and vegetables. Food Chem 14: 189-199. https://doi.org/10.1016/0308-8146(84)90058-X
  11. Albrecht JA, Schafer HW, Zottola EA. 1990. Relationship of total sulfur to initial and retained ascorbic acid in selected cruciferous and non-cruciferous vegetables. J Food Sci 55:181-183. https://doi.org/10.1111/j.1365-2621.1990.tb06047.x
  12. ASTM Committee. 1975. Method D-1925-70, D-1729-627, D-1925-70, D-1729-607. American Society for Testing & Materials, Philadelphia, PA, USA.
  13. Peleg M. 1983. Physical characteristics of food powders. In Physical Properties of Foods. The AVI Publishing Company Inc., Westport, CT, USA. p 293-323.
  14. Shin EJ. 2009. Quality characteristics of Bulensia sarmienti powder through spray drying process. MS Thesis. Kyungpook National University, Deagu, Korea.
  15. Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and relative substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  16. Leach HW, McCowen LD, Schoh T. 1959. Structure of starch granules 1. Swelling and solubility patterns of various starches. Cereal Chem 36: 534-544.
  17. Chung HS, Hong JH, Youn KS. 2005. Quality characteristics of granules prepared by protein-bound polysaccharide isolated from Agaricus blazei and selected forming agents. Korean J Food Preserv 12: 247-251.
  18. Kaya A, Aydin O, Sevgi Kolayli S. 2010. Effects of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod Process 88: 165-173. https://doi.org/10.1016/j.fbp.2008.12.001
  19. Erenturk S, Gulaboglu MS, Gultekin S. 2005. The effects of cutting and drying medium on the vitamin C content of rosehip during drying. J Food Eng 68: 513-518. https://doi.org/10.1016/j.jfoodeng.2004.07.012
  20. Kim DW, Chang KS, Lee UH, Kim SS. 1996. Moisture sorption characteristics of model food powders. Korean J Food Sci Technol 28: 1146-1150.
  21. Teunou E, Fitzpatrik JJ, Synnott EC. 1999. Characterization of food powder flowability. J Food Eng 39: 31-37. https://doi.org/10.1016/S0260-8774(98)00140-X
  22. Lee WY, Kim JK. 2001. Absorbtion characteristics of persimmon powder depending on temperature changes and drying methods. J East Asian Soc Dietary Life 11: 479-484.

Cited by

  1. Quality Characteristics and Antioxidant Properties of Yanggaeng Supplemented with Hallabong Powder vol.44, pp.12, 2015, https://doi.org/10.3746/jkfn.2015.44.12.1918
  2. 반응표면분석법을 이용한 감귤건조칩 제조조건 최적화 vol.34, pp.5, 2014, https://doi.org/10.7318/kjfc/2019.34.5.637
  3. Production of Green Yuzu Peel Tablet and Its Physiochemical or Functional Characterization vol.50, pp.9, 2021, https://doi.org/10.3746/jkfn.2021.50.9.971