DOI QR코드

DOI QR Code

Incremental Model Formulation of Creep under Time-varying Stress History

시간이력 하중을 받는 콘크리트의 점증적 크리프 모델

  • Received : 2013.09.24
  • Accepted : 2014.04.01
  • Published : 2014.06.01

Abstract

Internal or external restraint of concrete strain due to drying shrinkage and creep in concrete structures causes mechanical strain and becomes a source of persistent change in creep-causing stress conditions. Mathematical modeling to incorporate the persistent change of creep-inducing stress is generally achieved with consideration of the ages of concrete and concrete properties at the times of loadings, and stress history. This paper presents an incremental format of creep model based on parallel creep concept to depict the creep under time-varying stress history in developing creep strain. Laboratory experiments are carried out to validate the performance of the presented creep model. Typical creep phenomena are addressed through the comparisons between the measured and predicted creep strains.

콘크리트의 크리프와 건조수축 변형에 대한 내적 혹은 외적 구속은 크리프 발생 응력조건을 변화시키며 이에 따라 크리프 변형의 발생은 응력변화에 종속적으로 변화한다. 시간이력 하중을 받는 크리프 거동문제로서 이해되는 이러한 크리프 거동현상의 수학적 모델링은 일반적으로 재하시의 콘크리트 재령과 물성값 및 하중이력을 기본 구성인자로 고려하여 시간적분 혹은 점증적 형태로 유도되었다. 본 논문에서는 시간이력하중을 받는 크리프 모델 가운데 단일 크리프 곡선을 사용하는 초기 크리프 모델인 평행 크리프 법의 단순성을 고려하여 이 방법이 갖는 단점과 한계성을 극복하고 성능을 개선한 평행 크리프 법을 유도하였다. 유도된 크리프 모델의 성질을 분석하고 예측 성능을 검증하기 위한 목적으로 원통형 콘크리트 공시체를 제작하고 시간이력 하중 하의 크리프 실험을 수행하였다. 끝으로, 콘크리트 공시체의 크리프 변형으로 인한 초기하중의 변화가 공시체의 재령에 따른 거동에 미치는 영향정도를 실험을 통해 분석하였으며, 크리프 시험기의 스프링계수를 측정하여 이로 인한 실험오차를 보정하였다.

Keywords

References

  1. ACI Committee 209 (1996). Prediction of creep, shrinkage and temperature effect in concrete structures, ACI Manual of Concrete Practice, Part I.
  2. Bazant, Z. P. (1972). "Prediction of concrete creep effects using age-adjusted effective modulus method." ACI J., Vol. 69, No. 4, pp. 212-217.
  3. Bazant, Z. P. and Chern, J. C. (1985). "Concrete creep at variable humidity: Constitutive law and mechanism." Materials and Structures, RILEM, Vol. 18 No. 103, pp. 1-20. https://doi.org/10.1007/BF02473360
  4. Choi, H. T. and Yoon, Y. S. (1999). "Comparative study on the creep models and analytical methods in concrete considering incremental stress history." J. of KSCE, KSCE, Vol. 19, No. I-5, pp. 675-685 (in Korean).
  5. fib (1999). Structural concrete-textbook on behavior; Design and Performance, CEB-FIP Model Code 1990, Vol. 1, pp. 21-52.
  6. Ghali, A. and Favre, R. (1986). Concrete structures: Stresses and Deformations, Chapmal and Hall, London-New York.
  7. Gilbert, R. I. (1988). Time effects in concrete structures, Elsevier Science Publishers, Amsterdam.
  8. Gilbert, R. I. and Ranzi, G. (2010). Time-dependent behavior of concrete structures, Spon Press, London and New York.
  9. Glanville, W. H. (1930). Studies in reinforced concrete - III, the creep or flow of concrete under load, Building Research Technical Paper No. 12, Dept. of Scientific and Industrial Research, London.
  10. Kawano, A. and Warner, R. F. (1992). "Model formulations for numerical creep calculations for concrete." J. of Struct. Engrg., ASCE, Vol. 122, No. 3, pp. 284-290.
  11. KCI Committee (2007). Design standard for concrete structures, KCI (in Korean).
  12. Oh, B. H. and Lee, H. J. (2000). "Time-dependent analysis of reinforced and prestressed concrete structures considering tensile creep of concrete." J. of KSCE, KSCE, Vol. 20, No. 1-A, pp. 1-11 (in Korean).
  13. Oh, B. H., Choi, S. C. and Cha, S. W. (2005). "Identification of relaxation in early-age concrete using differential-type viscoelastic constitutive law." J. of KSCE, KSCE, Vol. 25, No. 1A, pp. 1-9 (in Korean).
  14. Pisani, M. A. (1996). "Numerical analysis of creep problems." Computers and Structures, Vol. 51, No. 1, pp. 57-63.
  15. Rusch, H., Jungwirth, D. and Hilsdorf, H. K. (1983). Creep and shrinkage their effect on the behavior of concrete structures, Springer-verlag, New York, Heidelberg, Berlin.
  16. Whitney, C. S. (1932). "Plain and reinforced concrete arches." ACI J., Vol. 28, pp. 479-519.