DOI QR코드

DOI QR Code

Physical Properties of Sulfur Concrete with Modified Sulfur Binder

유황개질 바인더를 사용한 유황 콘크리트의 물리적 특성

  • 배성근 (울산대학교 건설환경공학부) ;
  • 권성우 (울산과학기술대학교 도시환경공학부) ;
  • 김세원 (울산대학교 친환경건자재사업단) ;
  • 차수원 (울산대학교 건설환경공학부)
  • Received : 2014.02.20
  • Accepted : 2014.03.12
  • Published : 2014.06.01

Abstract

Recently, a huge amount of sulfur has been produced as a byproduct of petroleum refining processes in Korea. Sulfur concrete is made of modified sulfur binder instead of cement paste, which has advantages of reducing $CO_2$ emission from cement industry as well as utilizing surplus sulfur. Also, sulfur concrete is a sustainable material that can be repetitively recycled. In this study, the physical properties of sulfur concrete are experimentally investigated. From the test results, sulfur concrete showed compressive strengths higher than at least 50MPa. Also, the unit weight, modulus of elasticity and splitting tensile strength of sulfur concrete was similar to that of Portland cement concrete (PCC). The coefficient of thermal expansion of sulfur concrete was a little larger than that of Portland cement concrete and sulfur concrete with mineral filler is helpful to lower the coefficient of thermal expansion. recycled aggregate sulfur concrete resulted in a slight reduction in the compressive strength, but sulfur concrete with recycled aggregate can achieve the high strength characteristics.

최근 국내에서는 원유 정제과정에서 많은 양의 부생황이 발생하고 있다. 유황콘크리트는 시멘트 풀을 유황개질 바인더로 대체한 콘크리트로서 시멘트 제조시에 대량으로 발생되는 $CO_2$의 저감 및 원유 정제산업에서 부생되는 황을 활용할 수 있는 이점이 있다. 또한 유황콘크리트는 반복해서 재활용할 수 있는 친환경적이고 지속가능한 재료이다. 이 연구에서는 개질유황 바인더를 사용한 유황콘크리트의 물리적 특성을 실험을 통하여 검토하였다. 실험 결과, 유황콘크리트는 대체적으로 50~80MPa 이상의 고강도 특성을 보였다. 단위질량, 탄성계수 및 인장강도는 포틀랜드 시멘트 콘크리트(PCC)와 유사하였다. 순환굵은골재를 유황콘크리트에 적용하는 경우 순환골재의 단점을 보완하는 동시에 고강도콘크리트 제조가 가능하다. 유황콘크리트의 열팽창계수는 PCC보다 다소 큰 값으로 나타내고 있으나, 채움재를 혼입하여 일반 콘크리트 수준의 열팽창계수를 보이는 것으로 나타났다.

Keywords

References

  1. ACI Committe 363 (2010). State-of-the-art report on high-strength concrete, America Concrete Institute, Detroit.
  2. ACI Committe 548 (1998). Guide for mixing and placing sulfur concrete in construction, America Concrete Institute, Detroit.
  3. Bae, S. H. (1992). "Characteristics of sulfur mortar and concrete." Magazine of the Korea Concrete Institute, Vol. 4, No 1, pp. 58-61 (in Korean).
  4. Cha, S. W., Kim, K. S. and Park, H. S. (2011). "Manufacture of modified sulfur polymer binder and characteristics of sulfur concrete." Magazine of the Korea Concrete Institute, Vol. 23, No. 6, pp. 40-42 (in Korean).
  5. Choi, D. W. (2011). "Suggestions for sustainable development of concrete industry." Magazine of the Korea Concrete Institute, Vol. 23, No. 2, pp. 12-14 (in Korean).
  6. KCI (2009). Standard concrete construction specification, Korea Concrete Institute, Seoul (in Korean).
  7. KCI (2012). Concrete structure design code, Korea Concrete Institute, Seoul (in Korean).
  8. Lee, H. S., Shin, S. W. and Tae, S. H. (2009). "The development status and the future research trend of sustainable concrete." Magazine of the Korea Concrete Institute, Vol. 21, No. 2, pp. 34-40 (in Korean).
  9. Mindess, S., Young, J. F. and Darwin, D. (2003). Concrete, Pearson Education, London.
  10. Mohamed, A. M. O. and El Gamal, M. (2010). Sulfur concrete for the construction industury: A Sustainable Development Approach, J. Ross Publishing, Inc, USA, 2010.
  11. Sheen, D. H., Joo, C. W., Choi, J. Y. and Choi, J. C. (2004). "Preparation of modified sulfur concrete pipe using centrifugal force." Proceeding of 2004 Annual Conference, KSCE, pp. 513-520 (in Korean).
  12. Sheen, D. H., Kang, S. H., Roh, J. H. and Ryu, Y. S. (2002). "Properties and usages of sulfur concrete as construction material." Korean Society of Civil Engineers Magazine, Vol. 50, No. 6, pp. 39-45 (in Korean).
  13. Vroom, A. H. (1998). "Sulfur concrete goes global." Concrete International, Vol. 20, No. 1, pp. 68-71.
  14. Yoon, J. H. (2004). "An experimental study on the manufacturing of sulfur concrete." Journal of the Architectural Institute of Korea Structure & Construction, Vol. 20, No. 9, pp. 143-148 (in Korean).
  15. Yoon, J. H. (2005). "An experimental study on physical properties of sulfur concrete." Journal of the Architectural Institute of Korea Structure & Construction, Vol. 21, No. 11, pp. 143-150 (in Korean).
  16. Yoon, J. H. (2006). "An experimental study on durability of sulfur concrete." Journal of the Architectural Institute of Korea Structure & Construction, Vol. 22, No. 6, pp. 95-102 (in Korean).
  17. Yoon, J. H. and Heo, H. S. (2003). "An experimental study on the manufacturing of sulfur mortar." Journal of the Architectural Institute of Korea Structure & Construction, Vol. 19, No. 11, pp. 93-99 (in Korean).

Cited by

  1. Strength Development of Sulfur-Polymer-Based Concrete Surface Protecting Agents Depending on Curing Condition and Hazard Assessment of Sulfur Polymers vol.19, pp.1, 2015, https://doi.org/10.11112/jksmi.2015.19.1.139
  2. Manufacture of melting temperature controllable modified sulfur (MS) and its application to MS concrete vol.24, pp.6, 2014, https://doi.org/10.6111/JKCGCT.2014.24.6.261